
Language Modeling over Logical Forms

by

Michael Sullivan

May 9, 2025

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Linguistics

Copyright by

Michael Sullivan

2025

ii

Contents

Abstract ix

1 Introduction 1

1.1 Defining Language Models over Logical Forms 5

1.1.1 Logical Forms . 5

1.1.2 Language Models . 6

1.2 Objectives . 7

1.3 Contributions . 8

1.4 Outline . 9

2 It is not True that (Superficial) Transformers are Inductive Learners 13

2.1 Background: NLI . 15

2.2 Related Work . 15

2.2.1 Inoculation by Fine-Tuning . 16

2.2.2 Probing LMs with Negation . 17

2.3 Can Transformers Model LEM? . 19

2.4 Experiment 1 . 21

2.4.1 Experimental Setup . 21

2.4.1.1 Challenge Data Generation 21

2.4.1.2 Inoculation and Evaluation 23

2.4.2 Results . 25

iii

2.5 Experiment 2 . 30

2.5.1 Experimental Setup . 30

2.5.2 Results . 31

2.6 Experiment 3 . 32

2.6.1 Experimental Setup . 32

2.6.2 Results . 32

2.7 Discussion . 35

2.8 Conclusion . 37

2.9 Proof of Theorem 1 . 38

2.9.1 FOC[+;MOD] . 38

2.9.2 Notation . 39

2.9.3 Proof . 40

3 Formal-Logical Distributional Semantics (FoLDS) 51

3.1 Background and Related Work . 52

3.1.1 Formal Semantics . 52

3.1.2 Distributional Semantics . 53

3.1.3 Formal-Distributional Semantics . 54

3.2 The FoLDS Model . 59

3.2.1 Distributional Semantics over Logical Forms 59

3.2.2 From Textual to MRS Representations 61

3.2.2.1 Minimal Recursion Semantics (MRS) 62

3.2.2.2 Parsing and Coreference Alignment 64

3.2.3 From MRS to Pseudo-MRS . 67

3.2.3.1 MRS Preprocessing . 67

3.2.3.2 Pseudo-MRS (PMRS) . 69

3.2.4 From Pseudo-MRS to a Fuzzy-Logical Model World 71

3.2.5 Similarity Metric . 78

iv

3.3 Experiment: Property Inference . 82

3.3.1 Task Description . 82

3.3.2 Previous Work . 84

3.3.3 Experiment . 84

3.3.4 Evaluation and Results . 87

3.4 Discussion . 91

4 Graph-based FoLDS (GFoLDS) 94

4.1 Background and Related Work . 97

4.1.1 Dependency MRS (DMRS) . 97

4.1.2 Graph Neural Networks (GNNs) . 100

4.1.2.1 Graph Convolutional Networks 101

4.1.2.2 GCNs Aggregate Local Neighborhoods 102

4.1.2.3 Graph Transformers . 105

4.1.3 GNNs for NLP . 107

4.1.3.1 Task-Specific Models . 108

4.1.3.2 Knowledge Graph Incorporation 110

4.1.3.3 Linguistic Structure Infusion 111

4.1.3.4 Graph-to-Text Models . 113

4.1.3.5 Functional Distributional Semantics at Scale 115

4.2 GFoLDS Architecture . 117

4.2.1 Embedding Layer . 118

4.2.2 Positional Encoding Network . 119

4.2.3 Encoder Stack . 122

4.3 Data Preprocessing . 123

4.3.1 CARGs and OOV Items . 123

4.3.2 Additional Preprocessing Steps . 126

4.4 Pretraining GFoLDS . 129

v

4.4.1 Corpus . 129

4.4.2 Masked Node Modeling . 130

4.4.3 Hyperparameters . 132

4.5 Discussion . 134

5 GFoLDS: Experiments 135

5.1 BERT Comparison Models . 136

5.1.1 Pretraining Data . 137

5.1.2 Hyperparameter Selection . 138

5.2 RELPRON . 142

5.2.1 Task Description . 142

5.2.2 Results . 146

5.3 Natural Language Inference (SNLI) . 147

5.3.1 Task Description . 148

5.3.1.1 Constructing Graph Representations 149

5.3.1.2 CARGs and OOV Items . 151

5.3.2 Results . 152

5.4 Factuality . 154

5.4.1 Task Description . 155

5.4.2 Results . 156

5.5 Property Inference . 157

5.5.1 Task Description . 158

5.5.2 Results . 159

5.6 Discussion . 161

6 GFoLDS: Model Analysis 164

6.1 Scalability . 165

6.1.1 Background . 166

vi

6.1.2 Experimental Setup . 168

6.1.3 Results . 169

6.2 The Accelerated Learning Hypothesis . 174

6.2.1 Experimental Setup . 175

6.2.1.1 Elementary Probes . 176

6.2.2 Results . 179

6.3 Limitations and Weaknesses . 182

6.3.1 Double-Negation Cancellation . 183

6.3.1.1 Task Description . 183

6.3.1.2 Results . 184

6.3.2 Mod-2 Counting . 186

6.3.2.1 Theoretical Results . 186

6.3.2.2 Experimental Results . 189

6.3.2.3 Discussion . 191

6.3.3 Sentence Membership Classification 192

6.3.3.1 Experiment . 192

6.3.3.2 Results . 194

6.4 Discussion . 195

6.5 Proof of Theorem 2 . 198

6.5.1 Proof Sketch . 198

6.5.2 Formal Proof . 200

7 Future Directions 206

7.1 Applications to Lower-Resource Languages 206

7.2 Improvements to GFoLDS . 207

7.2.1 Positional Encoding Module . 208

7.2.1.1 Background . 208

7.2.1.2 Proposed Approach . 211

vii

7.2.1.3 Applications . 212

7.2.2 Incorporating OOV Terms and CARGS 213

7.2.3 Multiple-Sentence Model . 214

7.2.3.1 Proposed Approach . 215

7.2.3.2 Entailment Prediction Objective 217

7.2.4 Hyperbolic Embeddings . 219

7.3 The Next Step: Graph-Generative Models 221

7.3.1 Background . 223

7.3.2 Proposed Architecture . 224

7.3.3 Training . 226

7.4 Discussion . 227

8 Conclusion 230

8.1 Findings and Contributions . 231

8.2 Limitations . 234

Bibliography 235

viii

Abstract

This dissertation introduces the research program of language modeling over logical forms:

the employment of language models (LMs) that take as input semantic representations. The

use of such models is motivated by the Accelerated Learning Hypothesis (ALH), which posits

that linguistic information—and semantic structure in particular—has a catalyzing effect on

LM (pre-)training, allowing LMs over logical forms to learn with less data than superficial

(i.e. over plain text) models. This dissertation additionally presents arguments that the use of

logical input representations improves the reasoning abilities of such models. As the current,

rapid improvements in large language models’ advanced abilities are primarily driven by their

leveraging of shallow heuristics and unsustainable rate of data consumption, LMs over logical

forms represent a promising new direction for continued progress in the field of Language AI.

The main objectives of this dissertation are twofold: first, to empirically support the

validity of the ALH, demonstrating that LMs over logical forms have the potential to learn

with less data; and second, to establish the feasibility (of implementation) and utility (i.e.

applicability to downstream tasks) of such models, demonstrating their viability as general-

purpose LMs. To that end, this dissertation introduces two LMs over logical forms, including

the neurosymbolic Graph-based Formal-Logical Distributional Semantics (GFoLDS) model.

The pretrained GFoLDS model is applied to a wide range of downstream tasks, vastly

outperforming superficial models pretrained on the same amount of data, thereby demon-

strating the viability of LMs over logical forms. Additional experiments with the GFoLDS

model then provide direct evidence towards the ALH. This dissertation furthermore lays out

potential future avenues of research into language modeling over logical forms, outlining the

subsequent steps of this research program.

ix

Chapter 1

Introduction

Recent advances in large language models (LLMs) such as Llama-3 (Dubey et al., 2024),

DeepSeek-V3 (DeepSeek-AI, 2024), and GPT-3/4 (Brown et al., 2020; OpenAI, 2023) have

led to near-human performance on a wide variety of NLP tasks. In some cases, state-of-the-

art (SoTA) LLMs even exceed average human performance on tasks intended for human

evaluation: for example, GPT-4 scores in the 90th percentile on both sections of the SAT,

above the 50th percentile on all three sections of the GRE, and in the 88th percentile on

the LSAT (OpenAI, 2023). GPT-4 outperforms its predecessor (GPT-3.51) on nearly all

evaluation tasks, and in some cases (e.g. LSAT, GRE Quantitative, etc.) more than doubles

GPT-3.5’s performance: a staggering rate of improvement, given the mere two-year interval

between the respective release dates of these models.

These consistent increases in performance exhibited by SoTA LLMs are largely due to

corresponding increases in model size (Muennighoff et al., 2024): GPT-2 (Radford et al.,

2018) contains 1.5 billion parameters, while the parameter count of its successor, GPT-3,

totals a staggering 175 billion—a more than hundred-fold increase in less than three years2.

Given the massive parameter counts of SoTA LLMs and the advanced logical reasoning

abilities seemingly entailed by these models’ performance on tasks such as those discussed
1https://openai.com/blog/gpt-3-edit-insert
2The GPT-4 architecture has not been publicly released, but the model has been estimated to contain

over one trillion parameters.

1

https://openai.com/blog/gpt-3-edit-insert

above, it would not be unreasonable to wonder whether LLMs have achieved some degree of

human-like logical reasoning capability. In fact, this point of view is frequently expressed

in the literature: for example, Piantadosi and Hill (2022) claim that LLMs “likely capture

important aspects of meaning, and moreover work in a way that approximates a compelling

account of human cognition in which meaning arises from conceptual role.”

There is, however, a wide body of evidence (e.g. McCoy, Pavlick, and Linzen, 2019; Chien

and Kalita, 2020; Richardson et al., 2020; Niven and Kao, 2019; Naik et al., 2018; Yuan

et al., 2023, etc.) suggesting that, rather than developing actual, human-like reasoning

capabilities, language models (LMs) merely learn to leverage shallow heuristics to attain such

remarkable performance on logical-reasoning-oriented tasks. This indicates that while LMs

may be able to excel at artificially-created tasks intended to evaluate and improve logical

reasoning abilities, this heuristically-derived success cannot adequately translate to efficacy

in real-world logical-reasoning scenarios.

Furthermore, while the ever-growing financial cost (in terms of hardware upgrades,

electricity, etc.) associated with training and deploying ever-growing LLMs may present a

barrier to further advances in the field, there is another rapidly-approaching bottleneck on the

horizon: the so-called Chinchilla Scaling Laws state that the optimal amount of data required

to train an LLM scales proportionally to the model’s size (Hoffmann et al., 2022; Muennighoff

et al., 2024). Given the Chinchilla Scaling Laws, and the respective rates at which SoTA

LLMs and the stock of available language model training data are expanding, Villalobos et al.

(2024) estimate that high-quality English training data will be exhausted sometime between

the years 2026 and 2032: language model expansion is outpacing available natural language

production. This suggests that—without models that can learn with significantly less data

than current approaches—LLMs’ performance increases will begin to decelerate substantially

in the near future.

This does not necessarily mean that progress in the field of Language AI is condemned

to stall: linguistically-informed language models (LMs augmented by linguistic knowledge)

2

offer the potential to improve over—without consuming more training data than—superficial

LMs (i.e. language models over plain text). To be clear, I do not use the term superficial to

suggest that such LMs have a simpler architecture and/or (pre-)training regimen than other

models, but rather to indicate that these models are purely over surface text.

A substantial amount of recent research indicates that the injection of linguistic structure

into the architecture and/or (pre-)training data of an LM can drastically improve its perfor-

mance on downstream tasks: for example, Xu et al. (2021) inject syntactic dependency parses

into pretrainined transformer encoders—namely, BERT (Devlin et al., 2019) and RoBERTa

(Liu et al., 2019)—improving over the baseline models and achieving (then-)SoTA results on

relation classification, entity typing, and question answering tasks. Similarly, Sachan et al.

(2021) improve over the SoTA in semantic role labeling and relation extraction through the

fusion of dependency parse graphs into a pretrained BERT model.

Of particular interest to this dissertation is the Linguistics-Informed Multi-Task BERT

model (LIMIT-BERT; Zhou et al., 2020), a BERT architecture pretrained with additional,

syntactically- and semantically-informed objectives3 that uses the same amount of pretraining

data as the original BERT, and outperforms that BERT model on a series of logical-reasoning-

oriented tasks, including reading comprehension, natural language inference (NLI), and

question-answering. This result is supported by Zhang et al. (2020c), who find that combining

semantic role label embeddings with a pretrained BERT model vastly increases its performance

on reading comprehension and NLI tasks.

In this dissertation, I argue that the injection of linguistic information into LMs has a

catalyzing effect on their learning abilities, allowing linguistically-informed LMs to learn

faster than superficial models. In particular, I propose the following hypothesis:

3Part-of-speech prediction, semantic role prediction, constituency span identification, and dependency
span identification.

3

The Accelerated Learning Hypothesis:

i. Linguistically-informed LMs immediately begin learning more complex patterns, because

the aspects of linguistic knowledge incorporated into such models obviate the need to

learn elementary linguistic phenomena.

ii. This accelerated learning of complex patterns allows linguistically-informed LMs to learn

from less data than their superficial counterparts.

Critically, part (ii) of the Accelerated Learning Hypothesis (ALH) indicates that that the

use of linguistically-informed language models has the potential to mitigate the shortage of

LLM training data predicted by the Chinchilla Scaling Laws.

The question, then, is what kind of linguistic knowledge—syntactic or semantic—is most

useful for language model augmentation. Wu, Peng, and Smith (2021) combine pretrained

RoBERTa models with syntactic and semantic representations, and find that semantic

representations yield greater performance increases than syntactic parses on all of their

evaluation tasks: reading comprehension, textual similarity, question-answering, and NLI.

Extending this result to decoder models, Prange, Schneider, and Kong (2022) demonstrate

that GPT-2 equipped with semantic representations outperforms a syntax-augmented GPT-2

model on next-word prediction accuracy and entropy benchmarks. These results suggest that

semantic representations present the most beneficial structures for the purposes of augmenting

LMs with linguistic knowledge. Furthermore, there is evidence that the use of semantic

representations to augment LMs also has the potential to improve these models’ reasoning

abilities: as discussed above, Zhou et al. (2020), Zhang et al. (2020c), and Wu, Peng, and Smith

(2021) find empirically that semantic structure yields improvement over baseline, superficial

models on logical reasoning tasks such as reading comprehension, question-answering, and

NLI.

In this dissertation, I propose taking the premise of the Accelerated Learning Hypothesis

to its extreme, eschewing surface text altogether and employing language models (pre-)trained

4

solely over linguistic structure. Given the findings of Wu, Peng, and Smith (2021) and Prange,

Schneider, and Kong (2022) discussed above, I specifically advocate the use of LMs that

take as input semantic representations: language models over logical forms, which I define

precisely in Section 1.1.

1.1 Defining Language Models over Logical Forms

In order to formally define a language model over logical forms (Section 1.1.2), I first provide

a precise definition of the term logical form as used in this dissertation—and further motivate

the use of logical forms for language modeling—in Section 1.1.1.

1.1.1 Logical Forms

Definition 1 (Logical Form). A sentence in a formal language L, such that L carries a

predicate-argument structure that can be used to represent (aspects of) truth-conditional

linguistic meaning.

Note that this definition does not necessarily require that logical forms be interpretable

within a model structure: for example, sentences in Minimal Recursion Semantics (MRS;

Copestake et al., 2005) cannot be directly interpreted in a model due to underspecification,

but still fall under Definition 1.

I argue that the primary benefit of logical forms with respect to language modeling is the

de-noising effect conferred by the function-argument structure inherent to such representations

(by Definition 1)—which can be considered to be elementary linguistic knowledge (see Chapter

3). For example, although the syntactic position of the (proto-)agent (see e.g. Dowty, 1991)

of a sentence may vary depending on various structural factors (topicalization, passivization,

etc.), the (proto-)agent is always the first-place argument in a semantic representation. The

translation of surface text to logical form therefore has an equivalence-classing effect, so that

all syntactic paraphrases of the same proposition—for example, an active sentence and its

5

passive counterpart—are mapped to the same representation. The benefit to a language

model of the de-noising effect resulting from this equivalence-classing is clear: the model does

not need to learn to equate periphrastic structures, and so can immediately begin learning

co-occurrence relations between predicates (and/or arguments; see Chapter 3).

In a similar vein, certain logical-form representations, including the framework that I

employ in this dissertation (MRS; see Chapters 3 and 4), include morphosyntactic features

such as number, tense, person, etc., further de-noising the model’s input by offloading the

morphological realization of these properties to explicitly annotated labels. This is to say

that a model over logical forms does not need to learn the surface patterns corresponding to

inflection, as this information is instead explicitly provided through the semantic structure.

For example, an LM over logical forms does not need to learn that the suffix –s denotes a

plural noun—or irregular realizations of pluralization, e.g. goose/geese—because plural nouns

are directly labeled as such.

1.1.2 Language Models

In order to precisely define the term language model over logical forms, it is first necessary to

establish a definition of the term language model. Formally, a language model is a family

of joint probability distributions p(w1, . . . , wn) over sequences of words (Li, 2022). Equiva-

lently, we may define a language model as the conditional distribution p(wn | w1, . . . , wn−1):

p(w1, . . . , wn) is then calculated as in Equation 1.1.

p(w1, . . . , wn) =
n∏

i=1

p(wi | w1, . . . wi−1) (1.1)

However, this definition does not encompass masked language models such as BERT

(Devlin et al., 2019), in which a portion of the words in a sequence W = w1, . . . , wn are

replaced with a [MASK] symbol, and the model yields a probability distribution over each

of the masked words. Therefore, I employ a more general definition of a language model

6

(Definition 2) in this dissertation.

Definition 2 (Language Model). A probability distribution p(ŵi = x | Ŵ), where W =

w1, . . . , wn is a sequence of words, Ŵ is derived by replacing one or more words in W with

the [MASK] symbol, and ŵi = [MASK].

Note that the definition in Equation 1.1 is a special case of Definition 2, as demonstrated

in Equation 1.2.

p(w1, . . . , wn) = p(w1) · . . . · p(wn | w1, . . . , wn−1)

= p(ŵ1 = w1 | [MASK]) · . . . · p(ŵn = wn | w1, . . . , wn−1, [MASK])
(1.2)

A language model over logical forms can then be defined as a special case of a language

model, in which the words wi are symbols in a formal language (Definition 3).

Definition 3 (Language Model over Logical Forms). A probability distribution p(ŵi = x | Ŵ),

where W = w1, . . . , wn is a sequence of symbols comprising one or more logical forms, Ŵ is

derived by replacing one or more symbols in W with the [MASK] symbol, and ŵi = [MASK].

In the remainder of this dissertation, I make the case for LMs over logical forms empirically,

introducing two such models and demonstrating via a series of experimental results that

these models are able to learn with substantially less data than their superficial counterparts,

and are applicable to a wide range of NLP tasks.

1.2 Objectives

This dissertation has two major objectives. I first aim to provide evidence in support of the

validity of the Accelerated Learning Hypothesis (ALH): in light of the Chinchilla Scaling Laws

and the consequent, impending shortage of LLM training data discussed above, findings in

support of the ALH would be of considerable importance to the field of Language AI, opening

7

possibilities for the continued improvement of large language models at a more sustainable

rate of data consumption.

The second—but no less important—goal is to provide a proof-of-concept of the viability

of language modeling over logical forms. To be clear, I do not construct a fully-capable LM

over logical forms in this dissertation, and I leave the resolution of some limitations to future

work. However, I endeavor to demonstrate the feasibility and utility of language modeling

over logical forms in pursuit of this goal.

I use the term feasibility to refer to the practicality of implementing an LM over logical

forms with currently-available tools: specifically, I show that the noise introduced by the use

of an out-of-the-box, rule-based semantic parser does not drastically impair the (pre-)training

of these models; that such a model can be implemented using current machine learning

frameworks and architectures; and that existing NLP (pre-)training and evaluation techniques

can be readily adapted to this modality. Utility refers to the downstream applicability of

language models over logical forms: I demonstrate that these models can perform the same

tasks as a superficial LM, or (in some cases) that it will be feasible to improve the prototype

model(s) introduced in this dissertation to be able to do so.

The two primary objectives of this dissertation are highly interdependent: if the ALH

does not hold, then the feasibility of language models over logical forms is irrelevant, as they

would offer no benefit over existing, superficial LMs. Conversely, if language modeling over

logical forms is not feasible, then the ALH would be nothing more than an esoteric conjecture

with little practical importance.

1.3 Contributions

This dissertation is interdisciplinary in nature and makes contributions to the fields of

Linguistics and Machine Learning, the most important of which being a model architecture

and paradigm (the language model over logical forms introduced in Chapter 4) capable of

8

learning from less data, providing a potential route to overcome the impending bottleneck

predicted by the Chinchilla Scaling Laws. I additionally make publicly available the code

necessary to parse and process the data, construct and pretrain this model, and reproduce

all of the experiments conducted in this dissertation4.

The second major contribution is the introduction and development of the research program

of language modeling over logical forms: I provide theoretical and empirical arguments

motivating further research in this area, and introduce two LMs over logical forms. This

dissertation also lays out future directions for this research program, outlining the next major

step in the evolution of language models over logical forms.

Thirdly, this dissertation provides a deeper understanding of the reasons behind the

performance increases yielded by linguistic-knowledge augmentation that are demonstrated

in Xu et al. (2021); Sachan et al. (2021); Zhou et al. (2020); Zhang et al. (2020c); Wu, Peng,

and Smith (2021); Prange, Schneider, and Kong (2022), etc.: specifically, the Accelerated

Learning Hypothesis and the empirical evidence that I present strongly supporting its validity.

In a similar vein, the massive improvement in performance and data-efficiency conferred by

semantic representations that is empirically demonstrated in this dissertation constitutes

evidence suggesting the importance for modeling meaning of the function/argument structure

assumed by most semantic theories.

1.4 Outline

The remainder of this dissertation (Chapters 2-8) is organized as follows:

In Chapter 2, I investigate the logcial reasoning abilities of (near-)SoTA superficial natural

language inference (NLI) models through the lens of double-negation cancellation. The

experimental results of this chapter indicate that superficial models do not learn to reason

logically when fine-tuned on NLI datasets, supporting existing work in the literature indicating
4Chapter 2: https://github.com/mjs227/FoLDS, Chapter 3: https://github.com/mjs227/AdversarialNLI,

Chapters 4-6: https://github.com/mjs227/GFoLDS

9

https://github.com/mjs227/FoLDS
https://github.com/mjs227/AdversarialNLI
https://github.com/mjs227/GFoLDS

that they are instead learning to leverage shallow heuristics (McCoy, Pavlick, and Linzen,

2019; Chien and Kalita, 2020; Richardson et al., 2020; Niven and Kao, 2019; Naik et al.,

2018; Yuan et al., 2023, etc.). I use these results to demonstrate that even relatively simple

logical-reasoning tasks continue to confound near-SoTA superficial LMs, thereby providing

further motivation for the language models over logical forms that I introduce in Chapters 3

and 4. Chapter 2 also provides the experimental framework that I later use in Chapter 6 to

evaluate the logical reasoning abilities of the model that I introduce in Chapter 4, and to

probe it for limitations and weaknesses.

Chapter 3 introduces the Formal-Logical Distributional Semantics (FoLDS) model: a

non-neural model that generates complex-valued count vectors drawn from a fuzzy-logical

model world imperatively constructed from logical-forms (i.e. semantic representations). I

use FoLDS to demonstrate the feasibility of language modeling over logical forms, and show

that FoLDS outperforms superficial models on a downstream task—while using significantly

less data. This chapter also provides further arguments and empirical evidence in support of

the Accelerated Learning Hypothesis.

However, the FoLDS model suffers from several severe limitations that hinder its utility

(i.e. its applicability to a wide range of tasks): in Chapter 3, I use an analysis of the strengths

and weaknesses of FoLDS to establish a set of fundamental desiderata to consider when

constructing a language model over logical forms.

In Chapter 4, I use the desiderata established in Chapter 3 to motivate the Graph-based

FoLDS (GFoLDS) model: a modified variant of the transformer encoder architecture (Vaswani

et al., 2017) over graph representations of logical forms. I further motivate the particular

design choices that I made when implementing this model through an analysis of the existing

literature on graph transformers (Wu et al., 2021) and the limitations of graph neural networks

(GNNs), the use of GNNs in NLP, and graph-based methods for incorporating linguistic

structure/knowledge into language models. I then discuss the pretraining of the GFoLDS

model: relevant statistics of its pretraining dataset, the data preprocessing steps that I

10

employed, and the model’s pretraining objective and hyperparameters.

In Chapter 5, I evaluate the GFoLDS model introduced and pretrained in Chapter 4 on a

series of downstream tasks, in order to demonstrate the utility of this model: to the best

of my knowledge, the experiments conducted in Chapter 5 represent the first time that a

language model pretrained solely over logical forms has been evaluated on a wide range of

downstream tasks. In order to evaluate against a comparable superficial model, I pretrain

two BERT comparison models (the base and large architectural variants) on the same dataset

as GFoLDS. I then show that the GFoLDS model vastly outperforms the BERT comparison

models—and remains competitive with the original BERT models, which were pretrained on

far more data—on all four evaluation tasks, thereby providing evidence in support of the

Accelerated Learning Hypothesis and the use of language models over logical forms as more

data-economical LMs.

Chapter 6 is dedicated to an in-depth analysis of GFoLDS. In order to motivate continued

research into language models over logical forms, I investigate the scalability of GFoLDS and

show that this model is likely to scale in terms of pretraining data and parameter count,

indicating that a larger model trained on more data would continue to improve on downstream

tasks. I then present experimental results that directly support the validity of the Accelerated

Learning Hypothesis. Finally, in order to inform future directions in the development of

language models over logical forms, I use the experimental framework developed in Chapter

2 to probe the GFoLDS model: I identify several limitations of this model, all of which I

trace back to a single weakness in the graph-positional encoding component of the model’s

architecture.

Chapter 7 outlines future directions for GFoLDS and the research program of language

modeling over logical forms in general. I first discuss a potential application of the GFoLDS

model introduced in Chapter 4 that was left unexplored in this dissertation: namely, its use

with lower-resource languages. I then suggest improvements to GFoLDS that are intended to

address limitations uncovered in Chapters 4-6. Chapter 7 concludes with a proposal for what

11

I envision to be the next major phase in the research program of language modeling over

logical forms: graph-to-graph generative LMs.

The conclusion (Chapter 8) of this dissertation summarizes its findings, contributions,

and limitations.

12

Chapter 2

It is not True that (Superficial)

Transformers are Inductive Learners1

In this chapter, I introduce a probing task designed to investigate language models’ (LMs’)

ability to learn to reason logically and evaluate a range of (near-)state-of-the-art (SoTA)

superficial LMs on this task. Specifically, I investigate near-SoTA transformer (Vaswani et al.,

2017) natural language inference (NLI) models’ ability to inductively learn the law of the

excluded middle (LEM) in the context of external negation: negation that occurs externally

to the proposition that is negated, e.g. “it is not true that apples are red”. I argue that a

model’s ability to comprehend negation represents an effective proxy for its general logical

reasoning capabilities, due to the critical role that negation plays in logical reasoning: for

example, {¬,∧} and {¬,∨} both form functionally complete sets—any possible boolean

operator can be expressed through an expression consisting of only negation and conjunction

(or negation and disjunction). The use of external negation facilitates the data generation

procedure, permitting the automatic construction of challenge examples from NLI datasets

that modify the original examples’ class labels in a predictable manner (see Section 2.4.1.1).

In these experiments, I demonstrate that models fine-tuned on NLI datasets learn to
1A modified version of this chapter has been published in Sullivan (2024).

13

treat external negation as a distractor—effectively ignoring its presence in hypothesis sen-

tences—and that several near-SoTA encoder and encoder-decoder transformer models fail to

inductively learn the law of the excluded middle for a single external negation prefix with

respect to NLI tasks (Section 2.4). I then show that those models which are able to learn the

law of the excluded middle for a single prefix are unable to generalize this pattern to similar

prefixes (Section 2.5), and that this inability to generalize is due catastrophic forgetting of

the similarity between highly similar external negation prefixes (Section 2.6).

The experimental results contained in this chapter indicate that transformer models do

not learn to reason logically when fine-tuned on NLI datasets, lending further support to

existing hypotheses in the literature (see e.g. McCoy, Pavlick, and Linzen, 2019) that they are

instead learning to leverage shallow heuristics. In Section 2.3, I present evidence (Theorem

1) that this failure of superficial transformer models to inductively learn LEM arises from

deficiencies in their training procedure and/or the structure (or lack thereof) of their input

data, rather than flaws inherent to transformer architectures themselves (see the discussion

in Section 2.7).

The primary objective of this chapter is to construct an evaluation task that allows for

the in-depth analysis of the reasoning abilities of LMs: I aim to motivate the language model

over logical forms introduced in Chapter 4, using this task to demonstrate that there exist

relatively simple logical-reasoning tasks that continue to confound even near-SoTA superficial

LMs. Although—as with the superficial LMs—the model that I introduce in Chapter 4 fails

to accomplish the double-negation cancellation task (see Chapter 6), the detailed analysis

permitted by the experiments presented in the present chapter allows us to contrast the

reasons for its failure with those of superficial LMs, and to shed light on the significance of

these models’ weaknesses with respect to their logical reasoning capacity.

14

2.1 Background: NLI

NLI tasks require detecting inferential relations between pairs of sentences (Fyodorov, Winter,

and Francez, 2000). For NLI datasets such as MultiNLI (MNLI; Williams, Nangia, and

Bowman, 2017) and Stanford NLI (SNLI; Bowman et al., 2015), the task proceeds as follows:

given a pair of sentences (P,H), an NLI model must determine whether the premise P entails

the hypothesis H, H contradicts P , or P and H are neutral with respect to one another (i.e.

P does not entail H and H does not contradict P).

These tasks require logical reasoning capabilities that extend beyond basic linguistic

competence (Richardson et al., 2020). For example, understanding that “Jane is travelling to

Algeria” entails “Jane is travelling to Africa” requires mereological world knowledge (Hovda,

2009): an agent must know that Algeria is contained within Africa. To understand that

“Jane is traveling to Algeria” does not entail “Jane is traveling to Algiers”, the agent must

understand that Algiers is contained within Algeria, but that Algeria is not solely comprised

of the city of Algiers.

Because of the considerable amount of reasoning that is required to accomplish NLI tasks,

it is important to scrutinize the degree to which current NLI models are actually learning

to reason logically. McCoy, Pavlick, and Linzen’s (2019) findings suggest, for example, that

even (then-)SoTA NLI models such as BERT (Devlin et al., 2019) adopt shallow, textual

heuristics to achieve high-scoring results on the MNLI dataset, although the MNLI dataset

itself is likely to be—at least partially—at fault, as discussed in Section 2.2.

2.2 Related Work

There is a large body of existing work on probing NLI models to gain insight into their

reasoning abilities (Belinkov and Glass, 2019). As mentioned in Section 2.1, McCoy, Pavlick,

and Linzen (2019) find that language models fine-tuned on MNLI learn to leverage shallow

heurisics to achieve exceptionally high accuracy on this dataset. Similarly, Chien and Kalita

15

(2020) and Richardson et al. (2020) probe NLI models’ performance with respect to specific

syntactic and semantic phenomena (e.g. coordination, quantification, monotonicity, etc.).

They find that SoTA models fine-tuned on MNLI and SNLI perform poorly on challenge

examples generated to evaluate the models with respect to these phenomena, but can be

easily fine-tuned to master the challenge data, while retaining their high performance on the

original datasets.

2.2.1 Inoculation by Fine-Tuning

In all three of the aforementioned papers, their respective authors utilize the method of

inoculation by fine-tuning. Liu, Schwartz, and Smith (2019) introduce this paradigm as a

technique for differentiating between deficiencies in a model’s training data and deficiencies

in the model itself. Inoculation by fine-tuning assumes that there is an original dataset that

is divided into train/test splits and a smaller challenge dataset (also divided into train and

test splits), and that the model’s performance on the challenge dataset is significantly lower

than on the original dataset. The idea is to fine-tune the model on the challenge dataset

until validation performance on the original test set has not improved for five epochs, then

measure the newly fine-tuned (inoculated) model on the challenge test set. If the inoculated

model maintains its performance on the original test set and performs (nearly) as well on the

challenge test set, this suggests that the model’s poor performance on the challenge data was

due to flaws (e.g. a lack of diversity) in the original training data. Conversely, if the model’s

performance on the challenge test set remains significantly worse than on the original data

after inoculation, this suggests that its poor performance on the challenge data is due to a

deficiency in the model itself.

The experiments in this chapter probe various NLI models’ logical reasoning abilities

with respect to external negation, using automatically-generated challenge data along with

the inoculation by fine-tuning paradigm. Unlike the closely-related notion of adversarial

attacks, which seek to perturb input examples without altering their class labels, the external

16

negation prefixes used to generate challenge examples in Experiments 1-3 (Sections 2.4,

2.5, 2.6) do alter the original examples’ class labels, albeit in a predictable manner. This

is similar to the challenge data that Niven and Kao (2019) construct from the Argument

Reasoning Comprehension Task (Habernal et al., 2018); these authors find that BERT cannot

be inoculated against such challenge data, and conclude that (superficial) transformer models’

inability to ground text to real-world concepts presents an insurmountable barrier to their

logical-reasoning abilities.

2.2.2 Probing LMs with Negation

Naik et al. (2018) conduct “stress tests” on NLI models by concatenating logical distractor

strings such as “and false is not true” to the input examples, and find that such distractors

drastically reduce SoTA NLI models’ performance on these tasks. While these authors

investigate NLI models’ performance with respect to logical reasoning, their experiments

regarding negation are limited to negation items appearing in these distractor terms, rather

than negating the original hypothesis sentence itself. On the other hand, Hossain et al.

(2020) probe NLI models and datasets by negating the original premise and/or hypothesis

sentence(s) using an automatic dependency parser; these automatically-generated challenge

examples are then checked for accuracy and re-assigned class labels by human annotators.

These authors find that models fine-tuned on the original NLI datasets perform poorly on

development sets consisting of these negation-augmented examples, and that while fine-tuning

on the challenge data improves performance on negation-augmented test splits derived from

SNLI, fine-tuning does not significantly increase model accuracy on MNLI-derived examples.

Note that, unlike the present work, Hossain et al. (2020) do not study repeated/embedded

negation or double-negation cancellation.

Yuan et al. (2023) examine pretrained language models’ (PLMs) deductive reasoning

abilities via cloze tests. These authors find that PLMs are unable to fully generalize

rules of logical deduction to arbitrary contexts. Furthermore, they observe that these

17

models struggle to differentiate between positive statements and their negated counterparts,

in line with a wide body of recent literature suggesting that transformers have difficulty

processing and comprehending negation (e.g. Niven and Kao, 2019; Naik et al., 2018; Yuan

et al., 2023; Laverghetta Jr. et al., 2021; Rogers, Kovaleva, and Rumshisky, 2020; Ettinger,

2020; Laverghetta Jr. and Licato, 2022; Kassner and Schütze, 2020). They find that

while inoculating PLMs for deductive reasoning tasks improves performance, it results in

catastrophic forgetting of previous knowledge; likewise, in Sections 2.5 and 2.6 of this chapter,

I find that inoculating pretrained NLI models against challenge data augmented with external

negation prefixes causes catastrophic forgetting of prior knowledge of their similarity to

related prefixes.

Jang, Kwon, and Lukasiewicz (2022) evaluate the consistency of language models across

various axes. Of particular interest to the current discussion is their analysis of negational

consistency : the degree to which a given language model’s predictions differ between texts

having opposite meanings. These authors find that negational consistency remains low across

a variety of models and tasks—in particular, RoBERTa (Liu et al., 2019) and BART (Lewis

et al., 2020) exhibit low negational consistency on the SNLI dataset.

In an experiment highly related to the present work, Laverghetta Jr. and Licato (2022)

probe NLI models’ performance with respect to negation, and find that the models struggle

with certain types of negation more so than others. In line with the results we observe in

Section 2.4, they find that the models have difficulty inoculating against those problematic

negation categories. Unlike the experiments in this chapter, Laverghetta Jr. and Licato

(2022) do not construct challenge examples involving negation, but rather use examples drawn

from NLI datasets that already contain negation.

Unique to the work conducted in this chapter is the evaluation of transformers’ ability to

learn the law of the excluded middle (LEM) and our finding that, while many cannot learn

this pattern, a few transformer NLI models are in fact able to inductively learn LEM for a

single external negation prefix. Additionally, the results of Experiments 2 and 3 (Sections

18

2.5 and 2.6), extend Yuan et al.’s (2023) results regarding catastrophic forgetting resulting

from inoculation in the context of deductive reasoning tasks, to double negation-cancellation

in the setting of NLI tasks. Finally, Theorem 1 (see Section 2.3) is the first known proof

that there exists (at least, in principle) an encoder transformer capable of modeling LEM for

arbitrary-length sequences of any combination of external negation prefixes with respect to

any NLI dataset. This theorem sheds further light on evidence in the literature (Niven and

Kao, 2019; Naik et al., 2018; Yuan et al., 2023; Laverghetta Jr. et al., 2021; Rogers, Kovaleva,

and Rumshisky, 2020; Ettinger, 2020; Laverghetta Jr. and Licato, 2022; Kassner and Schütze,

2020, etc.) indicating that transformers struggle to model negation, and suggests that this

observed failure is not due to an inherent flaw in transformer architectures themselves, but

instead may be due to deficiencies in their training procedure and/or the structure of their

input data (see the discussion in Section 2.7).

2.3 Can Transformers Model LEM?

Before evaluating NLI models’ ability to inductively learn the law of the excluded middle

(LEM), I first establish whether—learnability aside—it is theoretically possible for transformer

architectures to model LEM at all: Theorem 1 proves that (encoder) transformer architectures

are in fact capable of modeling LEM with respect to NLI tasks for arbitrary-length sequences

of any combination of external negation prefixes. Note that—with the exception of the BART

models—the NLI datasets, transformer models, and set of external negation prefixes used in

Experiments 1-3 satisfy the assumptions of Theorem 1.

Theorem 1. Let D = {(Pi, Hi, Li)}i∈I be a finite-cardinality NLI dataset, and for any NLI

model M , let Acc(M,D) denote the classification accuracy of M on D. Let Σ′ be a finite

alphabet such that D ⊂ (Σ′)∗ × (Σ′)∗ ×Λ (where Λ = {E ,N , C} denotes the set of labels). Let

N ⊂ (Σ′)∗ be any finite-cardinality set of external-negation prefixes such that no prefix is a

19

substring of one or more other prefixes2.

Then there exists an alphabet Σ ⊃ Σ′ and an injective f : (Σ′)∗ → Σ∗ such that for any

fixed (finite) w > maxi∈I |PiHi| and any fixed-precision transformer encoder (with an NLI

classification head) T , there exists a fixed-precision transformer encoder T ′ such that T ′

matches the accuracy of T on D and on any dataset D′ formed by prefixing any η ∈ N∗ to

each hypothesis sentence in D3.

Proof. Section 2.9.

The proof of Theorem 1 relies on a function f that re-structures the input data; the

transformer NLI models evaluated in Experiments 1-3 (Sections 2.4, 2.5, 2.6) are obviously not

equipped with such a function, and the ability of transformers to model LEM with respect to

unstructured plain text is not established in Theorem 1. Furthermore, Theorem 1 merely states

that there exists an encoder transformer capable of modeling LEM for external negation with

respect to NLI tasks, and makes no claim regarding its architectural configuration (i.e. layer

size, floating-point precision, etc.). It is unclear whether the transformer models evaluated in

this chapter have the specific architecture required to accomplish this task.

Critically, the proof of Theorem 1 does not make any claims regarding the (inductive)

learnability of LEM; while it is theoretically possible to model LEM with an encoder trans-

former, these language models’ ability to inductively learn LEM remains uncertain from the

conclusions of Theorem 1 alone. In the following section (Experiment 1), we observe experi-

mental evidence demonstrating that some transformer NLI models (in particular, RoBERTa)

are able to learn LEM for a single external negation prefix.
2Formally: for all η ∈ N , η′, η′′ ∈ (N − {η})∗, there does not exist i, j such that η = η′i: || η′′:j
3Formally: Acc(T ′, f(D)) = Acc(T,D), and for any η ∈ N∗ such that maxi∈I |PiηHi| ≤ w:

Acc(T ′, {f(PiηHi)}i∈I) = Acc(T,D)

20

2.4 Experiment 1

Experiment 1 probes six different transformer NLI models’ ability to inductively learn the

law of the excluded middle (LEM) with respect to external negation. The DeBERTa (He

et al., 2021) model, denoted DeBERTaS4, is DeBERTa-large fine-tuned on SNLI. The first

BART model, denoted BARTM
5, is BART-large fine-tuned on MNLI, while the second,

BARTSMFA
6, is BART-large fine-tuned on MNLI, SNLI, FEVER (Thorne et al., 2018),

and ANLI (Nie et al., 2020). The first RoBERTa model, RoBERTaM 7, is RoBERTa-large

fine-tuned on MNLI, and the second, RoBERTaS8, is RoBERTa-large fine-tuned on SNLI,

while the third, RoBERTaSMFA
9, is RoBERTa-large fine-tuned on SNLI, MNLI, FEVER,

and ANLI.

2.4.1 Experimental Setup

For each 1 ≤ n ≤ 5 and each NLI dataset D ∈ {MNLI, SNLI}, let D≤n denote the depth-

≤n challenge set (consisting of train and development splits). D≤n is generated from

examples randomly drawn from the original dataset’s train splits: each MNLI≤n consists

of 4,906 entailment, neutral, and contradiction examples (14,718 total; 9,813 train/4,905

development), and each SNLI≤n consists of 14,997 examples (4,999 per class; 9,999 train/4,998

development).

2.4.1.1 Challenge Data Generation

Challenge sets. For each 1 ≤ k ≤ n, 1/nth of the examples in each class in D≤n are

depth-k negated by prepending the trigger prefix TNT = “it is not true that” to the original

hypothesis sentence k times (i.e. by converting (P,H) to (P, (TNT)
kH); see Table 2.1). For

4https://huggingface.co/pepa/deberta-v3-large-snli
5https://huggingface.co/facebook/bart-large-mnli
6https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
7https://huggingface.co/roberta-large-mnli
8https://huggingface.co/pepa/roberta-large-snli
9https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

21

https://huggingface.co/pepa/deberta-v3-large-snli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/roberta-large-mnli
https://huggingface.co/pepa/roberta-large-snli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

example, in D≤5, 1/5th of the examples in each class are depth-5 negated, 1/5th are depth-4

negated, 1/5th are depth-3 negated, etc. One may object that concatenating TNT five times

(for example) in front of the original hypothesis does not a result in a particularly natural

sentence, and that a model is highly unlikely to encounter such a sentence in real-world text

data. Regardless of its naturality, however, this pattern is fairly trivial (for a human) to learn:

given a challenge example (P, (TNT)
kH)—derived from an original example (P,H)—simply

count the number k of occurrences of TNT .

The class label remains the same if k is even or the class label is neutral, and contradiction

flips to entailment (and vice-versa) if k is odd: given a premise, hypothesis, label triple

(P,H,L) in an NLI dataset, the label L is defined as in Equation 2.1, where E , C, and N

denote entailment, contradiction, and neutral, respectively.

L = E ⇔ P → H (2.1a)

L = C ⇔ P → ¬H (2.1b)

L = N ⇔ (L ̸= E ∧ L ̸= C) (2.1c)

Where the left-hand sides of the bidirectional arrows in Equation 2.1a-b hold in every

logically possible state of affairs. Now consider the pair (P,H ′), where H ′ = ¬H. The label

L′ of the modified example (P,H ′) is a function of the label L of the original example (P,H):

if L = E , then we have the following logical equivalences in Equation 2.2.

(P → H) = (P → ¬¬H) = (P → ¬H ′)⇔ (L′ = C) (2.2)

Where the above equivalences follow from the law of the excluded middle, the definition

of H ′, and Equation 2.1b (respectively). Therefore, L = E ↔ L′ = C. Similarly, if L = C,

then we have the following logical equivalences in Equation 2.3 (by the definition of H ′ and

Equation 2.1a, respectively).

22

(P → ¬H) = (P → H ′)⇔ (L′ = E) (2.3)

By Equation 2.3, L = C ↔ L′ = E .

Finally, suppose that L = N . By the above discussion (Equations 2.2 and 2.3), we have

L = E ↔ L′ = C and L = C ↔ L′ = E . Therefore L′ /∈ {E , C} and so (by Equation 2.1c)

L′ = N . So we have L = N → L′ = N . Swapping L and L′ in the above discussion in this

paragraph, we have L′ = N → L = N . Therefore, L = N ↔ L′ = N .

Test sets. Now, for all m > 1 and each NLI dataset D ∈ {MNLI, SNLI}, let Dm
NT denote

the depth-m test set. Dm
NT is the size of the development split of D≤m, and the procedure

for generating Dm
NT is nearly identical to that of D≤m, with the exception that Dm

NT consists

only of depth-m externally-negated examples.

Note that the two datasets (MNLI and SNLI) contain many examples that are not

complete sentences—but rather sentence fragments—in which case the external negation

prefix TNT = “it is not true that” is grammatically nonsensical. To account for this, the

pool of possible examples to be included into the challenge and test datasets consists only

of those in which the hypothesis H is a complete sentence. If the first word in H is (part

of) a named entity—as determined by SpaCy’s EntityRecognizer 10 named entity recognition

pipeline—then the augmented (i.e. challenge) hypothesis is set to (TNT)
nH. If the first word

in H does not belong to a named entity, then the augmented hypothesis is (TNT)
nH0, where

H0 is formed from H by lower-casing the first character. This is to control for potential

confounding factors due to irregular capitalization.

2.4.1.2 Inoculation and Evaluation

For all 1 ≤ n ≤ 5, I inoculated each NLI model against the challenge set(s) D≤n. Following

the paradigm of inoculation by fine-tuning, the models were fine-tuned on the train split
10https://spacy.io/api/entityrecognizer

23

https://spacy.io/api/entityrecognizer

Premise Template Hypothesis Label
A young boy dressed A young boy
in plaid about to (P,H) is about to Entailment
take a picture. take a picture.

It is not true
(P, (TNT)

1H) that a young Contradiction
boy is about to
take a picture.
It is not true

(P, (TNT)
2H) that it is not Entailment

true that a
young boy is
about to take
a picture.
It is not true

(P, (TNT)
3H) that it is not Contradiction

true that it is
not true that a
young boy is
about to take
a picture.

A race between (P,H) The park is Contradiction
friends at the park. deserted.

It is not true
(P, (TNT)

1H) that the park Entailment
is deserted.
It is not true

(P, (TNT)
2H) that it is not Contradiction

true that the
park is
deserted.
It is not true

(P, (TNT)
3H) that it is not Entailment

true that it is
not true that
the park is
deserted.

People kneeling on (P,H) People are Neutral
the ground. praying.

It is not true
(P, (TNT)

1H) that people are Neutral
praying.

Table 2.1: Examples of depth-n negated challenge data points (P, (TNT)
nH) generated from

SNLI (some examples have been slightly modified for presentability).

24

of D≤n, and validated at each epoch on the original NLI dataset’s development split, with

early-stopping if validation performance did not improve after five epochs. Once inoculated

on the depth-≤n external negation data (D≤n), I evaluated the models on Dm
NT for multiple

values of m > n. This was intended to measure the degree to which the models are able to

generalize LEM beyond the number of external negation prefixes seen during inoculation.

I evaluated and inoculated each model on the challenge dataset(s) generated from the

dataset(s) that the model was originally fine-tuned on: BARTM and RoBERTaM were eval-

uated on MNLI-derived examples, RoBERTaS and DeBERTaS on SNLI-derived examples,

and BARTSMFA and RoBERTaSMFA on examples derived from both datasets. All models

were fine-tuned with a batch size of 64 at a learning rate of 10−5 using the Adam (Kingma

and Ba, 2014) optimizer.

2.4.2 Results

Model original/challenge development set accuracies pre- and post-inoculation are located in

Table 2.2. Most models were able to inoculate against the depth-≤n external negation data

for all 1 ≤ n ≤ 5: they retained their high-performing accuracy on the original development

sets, and performed as well (or nearly so) on the challenge development sets after inoculation.

The notable exceptions were BARTM and BARTSMFA, which struggled to inoculate for

n ∈ {1, 4, 5} and n ∈ {3, 4}, respectively—recall that BART is the only model architecture

evaluated in this experiment that does not satisfy the assumptions of Theorem 1.

25

Initial Initial Inoculated Inoculated
Model Depth (Original) (Challenge) (Original) (Challenge)
BARTM 1 0.89 0.52 0.77 0.94
RoBERTaM 1 0.89 0.51 0.87 0.93
DeBERTaS 1 0.9 0.39 0.9 0.91
RoBERTaS 1 0.88 0.57 0.88 0.89
BARTSMFA 1 0.89 0.69 0.87 0.92
RoBERTaSMFA 1 0.87 0.51 0.86 0.91
BARTM 2 0.89 0.61 0.86 0.94
RoBERTaM 2 0.89 0.63 0.87 0.97
DeBERTaS 2 0.9 0.48 0.9 0.96
RoBERTaS 2 0.88 0.66 0.88 0.94
BARTSMFA 2 0.89 0.72 0.88 0.95
RoBERTaSMFA 2 0.87 0.65 0.88 0.95
BARTM 3 0.89 0.53 0.87 0.95
RoBERTaM 3 0.89 0.54 0.87 0.96
DeBERTaS 3 0.9 0.45 0.9 0.96
RoBERTaS 3 0.88 0.57 0.88 0.93
BARTSMFA 3 0.89 0.6 0.76 0.93
RoBERTaSMFA 3 0.87 0.54 0.88 0.94
BARTM 4 0.89 0.61 0.62 0.75
RoBERTaM 4 0.89 0.62 0.74 0.88
DeBERTaS 4 0.9 0.54 0.89 0.76
RoBERTaS 4 0.88 0.64 0.89 0.89
BARTSMFA 4 0.89 0.66 0.62 0.86
RoBERTaSMFA 4 0.87 0.61 0.88 0.89
BARTM 5 0.89 0.55 0.32 0.74
RoBERTaM 5 0.89 0.56 0.88 0.93
DeBERTaS 5 0.9 0.5 0.9 0.91
RoBERTaS 5 0.88 0.58 0.88 0.89
BARTSMFA 5 0.89 0.59 0.87 0.88
RoBERTaSMFA 5 0.87 0.54 0.86 0.87

Table 2.2: Model accuracy on the original and challenge development sets before (initial)
and after (inoculated) depth-≤ n inoculation (1 ≤ n ≤ 5).

26

Depth-m No Depth-1 Depth-≤2 Depth-≤3
Model test inoc. inoc. inoc. inoc.
BARTM 2 0.71 0.32 — —
BARTM 3 0.36 0.93 0.31 —
BARTM 4 0.82 0.36 0.94 0.31
BARTM 5 0.33 0.88 0.31 0.94
BARTM 6 0.86 0.41 0.94 0.31
RoBERTaM 2 0.77 0.36 — —
RoBERTaM 3 0.34 0.89 0.33 —
RoBERTaM 4 0.85 0.33 0.97 0.32
RoBERTaM 5 0.32 0.88 0.33 0.95
RoBERTaM 6 0.89 0.34 0.97 0.33
DeBERTaS 2 0.56 0.62 — —
DeBERTaS 3 0.4 0.61 0.32 —
DeBERTaS 4 0.84 0.64 0.96 0.5
DeBERTaS 5 0.3 0.51 0.32 0.96
DeBERTaS 6 0.88 0.77 0.96 0.36
RoBERTaS 2 0.74 0.32 — —
RoBERTaS 3 0.4 0.89 0.3 —
RoBERTaS 4 0.84 0.35 0.94 0.39
RoBERTaS 5 0.34 0.88 0.3 0.74
RoBERTaS 6 0.83 0.33 0.93 0.53
BARTSMFA 2 0.77 0.37 — —
BARTSMFA 3 0.33 0.91 0.31 —
BARTSMFA 4 0.84 0.34 0.94 0.29
BARTSMFA 5 0.3 0.85 0.31 0.92
BARTSMFA 6 0.86 0.41 0.94 0.28
RoBERTaSMFA 2 0.79 0.35 — —
RoBERTaSMFA 3 0.32 0.93 0.32 —
RoBERTaSMFA 4 0.83 0.31 0.95 0.32
RoBERTaSMFA 5 0.32 0.94 0.32 0.94
RoBERTaSMFA 6 0.84 0.32 0.95 0.32
Mean 2 0.72 0.39 — —
Mean 3 0.36 0.86 0.32 —
Mean 4 0.84 0.39 0.95 0.35
Mean 5 0.32 0.82 0.32 0.91
Mean 6 0.86 0.43 0.95 0.35

Table 2.3: Accuracy for all models on depth-(m>n) external negation (Dm
NT) after depth-≤n

inoculation (n ∈ {1, 2, 3}) on D≤n. For the sake of convenience, mean accuracy across the
models is reported at the bottom of the table; most individual model accuracies do not
substantially deviate from these mean values.

27

Depth- No Depth-
Model m test inoc. ≤4 inoc.
BARTM 5 0.33 0.34
RoBERTaM 5 0.32 0.34
DeBERTaS 5 0.30 0.33
RoBERTaS 5 0.34 0.89
BARTSMFA 5 0.30 0.32
RoBERTaSMFA 5 0.32 0.79
BARTM 6 0.86 0.93
RoBERTaM 6 0.89 0.95
DeBERTaS 6 0.88 0.95
RoBERTaS 6 0.83 0.93
BARTSMFA 6 0.86 0.93
RoBERTaSMFA 6 0.84 0.95

Table 2.4: Accuracy for all models on depth-m external negation after depth-≤4 inoculation
(m ∈ {5, 6}).

In spite of their ability to inoculate against depth-≤n challenge data, the models struggled

to generalize this knowledge to depth-m negation for values of m > n. Table 2.3 reports

model accuracy on depth-m>n external negation after depth-≤n inoculation for 1 ≤ n ≤ 3,

2 ≤ m ≤ 6. A clear pattern emerges in this table: before any inoculation, we observe high

model accuracy (∼80%) on the depth-m negtion data for even values of m, and near-random-

chance accuracy (∼34%) for odd values of m. This indicates that, before inoculation, the

models were essentially entirely ignoring the external negation prefixes and treating them

as distractors; depth-m negation does not alter the class label for even values of m, and

so a model treating the prefix as a distractor will retain high accuracy on those examples,

purely by chance. To reiterate: these models—ostensibly fine-tuned on a logical-reasoning

task—have learned to entirely ignore external negation when predicting inferential relations.

Furthermore, when inoculated against depth-1 external negation, the pattern reverses:

we note near-random-chance accuracy for even values of m, and high accuracy for odd values

of m. After depth-1 inoculation, the models have learned to treat any depth-m external

negation prefix as equivalent to a depth-1 (i.e. single) prefix.

Interestingly, after depth-≤2 inoculation, the models revert to the original pattern of high

28

Depth- No Depth-
Model m test inoc. ≤5 inoc.
BARTM 6 0.86 0.34
RoBERTaM 6 0.89 0.91
DeBERTaS 6 0.88 0.31
RoBERTaS 6 0.83 0.94
BARTSMFA 6 0.86 0.30
RoBERTaSMFA 6 0.84 0.95
BARTM 7 0.32 0.93
RoBERTaM 7 0.32 0.96
DeBERTaS 7 0.28 0.95
RoBERTaS 7 0.36 0.94
BARTSMFA 7 0.29 0.92
RoBERTaSMFA 7 0.31 0.95

Table 2.5: Accuracy for all models on depth-m external negation after depth-≤5 inoculation
(m ∈ {6, 7}).

accuracy for even values of m, and poor performance for odd values. Despite training on both

depth-1 and depth-2 external negation, the models merely memorize the effect of depth-1

negation on class labels, and do not generalize to odd values of m > 1. A similar pattern

emerges after depth-≤3 inoculation: after fine-tuning on depth-1, depth-2, and depth-3

external negation, the models memorize the effect (or lack thereof) of depth-2 negation on

class labels, and do not generalize to even values of m > 2.

However, Table 2.4 indicates that, after depth-≤4 inoculation, the RoBERTaS and

RoBERTaSMFA models do in fact inductively learn to repeatedly cancel double negation for

values of m > 4. After depth-≤5 inoculation, RoBERTaM also learns the desired pattern

(see Table 2.5): all three RoBERTa models have inductively learned LEM for arbitrary values

of m.

Given all six models’ difficulty with inoculation against depth-m external negation for

arbitrary values of m, it is reasonable to question the RoBERTa models’ ability to generalize

the negation-cancellation patterns that they have learned after depth-≤5 inoculation to

external negation strings beyond the trigger TNT = “it is not true that” that they saw during

inoculation. The following experiment (Section 2.5) evaluates the three RoBERTa models’

29

ability to repeatedly cancel double negation with respect to the prefix “it is false that”, after

inoculation against depth-≤5 “it is not true that” prefixes (D≤5).

2.5 Experiment 2

This experiment restricts its analysis to the three RoBERTa models, as they were the only

models of the six evaluated in Experiment 1 (Section 2.4) that were able to fully generalize

depth-m negation-cancellation to arbitrary values of m > 5.

2.5.1 Experimental Setup

For all m ≥ 1 and each NLI dataset D ∈ {MNLI, SNLI}, let Dm
F denote the depth-m challenge

test set. Each Dm
F was created in an identical manner to the depth-m challenge test sets

Dm
NT defined in Section 2.4.1 above: Dm

F consists only of examples drawn from the dataset’s

original development split that are modified to have depth-m externally-negated hypothesis

sentences with an equal number of examples per class label, and |Dm
F | = |Dm

NT |.

However, in place of the trigger TNT = “it is not true that” used to construct Dm
NT , in this

experiment Dm
F was generated using the trigger TF = “it is false that”. These two triggers are

effectively semantically equivalent; the phrase “not true” has simply been replaced with the

(virtually) synonymous “false”. Assuming that the models have truly learned the law of the

excluded middle (LEM), we should expect to see similar performance on Dm
F to that of Dm

NT .

After inoculation on the depth-≤5 TNT external negation data, I evaluated each of

the three RoBERTa models (RoBERTaS, RoBERTaM , RoBERTaSMFA) on Dm
F for all

1 ≤ m ≤ 8. As in the procedure for Experiment 1 (see Section 2.4.1), each model was

evaluated on the challenge dataset(s) generated from the dataset(s) that the model was

originally fine-tuned on.

30

2.5.2 Results

Figure 2.1: Accuracy for the depth-≤5 TNT -inoculated RoBERTa models on depth-m
externally-negated examples with TNT (dashed) and TF (solid).

Figure 2.1 shows the results of this experiment: RoBERTaS failed to generalize LEM

from TNT to TF for values of m > 2, while RoBERTaM and RoBERTaSMFA experience

precipitous decreases in accuracy at m = 5 (and erratic accuracy thereafter). While these

models are able to generalize external negation-cancellation to arbitrary-length repeated TNT

prefixes, they clearly cannot extend this pattern to near-synonymous prefixes.

One may object that the models have failed to learn the pattern for TF because they did

not see it during inoculation. This objection may be valid, but belies the critical point: these

models have failed to generalize LEM from TNT to TF . While the models very well may learn

to cancel external negation prefixes after fine-tuning on all possible sequences of this type

(see the discussion in Section 2.7), at that point they are not learning the general function of

negation, but rather memorizing it for each possible surface realization.

Given the conclusions of Theorem 1 and the RoBERTa models’ ability to generalize

double-negation cancellation for TNT as observed in Experiment 1 (Section 2.4), the results

of Experiment 2 beg the question as to why the RoBERTa models cannot fully generalize

LEM from TNT to TF . In the following experiment (Section 2.6), I examine the embeddings

generated by the RoBERTa models pre- and post-inoculation, shedding light on the root of

31

their failure to learn to generalize LEM to unseen prefixes.

2.6 Experiment 3

As in Experiment 2 (Section 2.5), this experiment restricts its analysis to the three RoBERTa

models.

2.6.1 Experimental Setup

As mentioned above, this experiment probes the embeddings that these models generate

before and after depth-≤5 TNT inoculation. For each dataset D ∈ {MNLI, SNLI}, I took

a subset D′ of the original development set, containing ∼50-100 examples of each class,

depending on the size of the dataset. Then, for each 1 ≤ m ≤ 8 and each (Pi, Hi) ∈ D′,

I computed the cosine similarity between the mean-pooled embeddings of (TNT)
mHi and

(TF)
mHi.

For even values of m, I additionally computed the cosine similarity between (TNT)
mHi and

(TF)
2Hi; (TNT)

2Hi and (TF)
mHi; (TNT)

mHi and (TNT)
2Hi; (TF)mHi and (TF)

2Hi; (TNT)
mHi

and Hi; and (TF)
mHi and Hi. For odd m, I computed the similarity between (TNT)

mHi and

(TNT)
1Hi; (TF)mHi and (TF)

1Hi; (TNT)
mHi and (TF)

1Hi; and (TF)
mHi and (TNT)

1Hi.

As in Experiments 1 and 2 (Sections 2.4 and 2.5, respectively), each model was evaluated

using the challenge dataset(s) generated from the dataset(s) that the model was originally

fine-tuned on.

2.6.2 Results

We observe that depth-≤5 inoculation drastically increases the similarity between (TNT)
mHi

and (TNT)
1Hi for all three models for odd values of m (Figure 2.2a), but decreases the

similarity between (TF)
mHi and (TF)

1Hi for m ≥ 5 (Figure 2.2b)—recall that for odd

m, (TNT)
mHi / (TF)

mHi should be synonymous with (TNT)
1Hi / (TF)

1Hi. The results are

32

(a) sim((TNT)
nHi, (TNT)

1Hi) (b) sim((TF)
nHi, (TF)

1Hi)

Figure 2.2: Mean cosine similarity between (TNT)
nHi / (TNT)

1Hi (Figure 2.2a) and (TF)
nHi

/ (TF)
1Hi (Figure 2.2b) for the three RoBERTa models before (dashed) and after (solid)

depth-≤5 TNT inoculation.

Model Before After
RoBERTaM 0.996 0.268
RoBERTaS 0.996 0.712
RoBERTaSMFA 0.996 0.646

Table 2.6: Cosine similarity between the RoBERTa models’ (mean-pooled) embeddings of
the strings “false” and “not true” before and after depth-≤5 inoculation.

analogous for even values of m (see Figure 2.3).

Additionally, as m increases, mean cosine similarity decreases between (TF)
mHi and

(TNT)
2Hi, and (TF)

mHi and (TNT)
1Hi (see Figures 2.4a and 2.4b, respectively). We also

observe decreases in cosine similarity between (TF)
mHi and (TNT)

mHi for even and odd

m > 4 (see Figure 2.4c).

These results indicate that the inoculation procedure conducted in Experiment 1 (Section

2.4) has lead to catastrophic forgetting. In particular, it seems that learning to cancel double

negation for TNT has drastically altered the models’ encodings of the string “not true”, pulling

its representation in the embedding space away from those of similar phrases such as “false”.

This conjecture is supported by Table 2.6: we observe that—before inoculation—the models’

representations of the strings “not true” and “false” are nearly identical. However, after

depth-≤5 TNT inoculation, the models’ representations of the two strings are substantially

further apart in the embedding space.

33

(a) sim((TNT)
nHi, (TNT)

2Hi) (b) sim((TNT)
nHi, Hi)

(c) sim((TF)
nHi, (TF)

2Hi) (d) sim((TF)
nHi, Hi)

Figure 2.3: Mean cosine similarity between even-depth externally-negated examples and their
original/depth-2-negated counterparts for the three RoBERTa models before (dashed) and
after (solid) depth-≤5 TNT inoculation.

Furthermore, the results of this experiment indicate that the models have not learned

the linguistic function of negation during pre-training or original fine-tuning on the MNLI

and SNLI datasets, analogous to the findings of Yuan et al. (2023) with respect to deductive

reasoning tasks. Aside from the results in Table 2.3 indicating that these NLI models simply

treat external negation prefixes as distractors before inoculation, note that if the models

already understood the logical function of prefixes such as TNT , then further refining the

models’ knowledge of the function of that prefix—i.e. fine-tuning on the depth-≤5 TNT

data—should not significantly alter its representation in the embedding space relative to

highly similar prefixes such as TF , contrary to what we observe in Table 2.6.

34

(a) sim((TF)
nHi, (TNT)

2Hi) (b) sim((TF)
nHi, (TNT)

1Hi)

(c) sim((TF)
nHi, (TNT)

nHi)

Figure 2.4: Mean cosine similarity between examples modified with the TF and TNT prefixes,
for the three RoBERTa models before (dashed) and after (solid) depth-≤5 TNT inoculation.

2.7 Discussion

The results of Experiments 1-3 (Sections 2.4, 2.5, 2.6) raise the question as to why these

models are unable to inductively learn the law of the excluded middle (LEM)—especially in

light of Theorem 1, which states that (in theory) transformers are able to model LEM with

respect to NLI tasks. A reasonable explanation for this seemingly paradoxical state of affairs

can be found within the conclusions of Theorem 1 itself.

Note that the proof of Theorem 1 relies on a function f that re-structures the input data

(as mentioned in Section 2.3); it is possible that the structure (or lack thereof) of purely

textual data may be insufficient for transformers to inductively learn to model LEM.

Additionally, recall that the proof of Theorem 1 does not establish the (inductive)

learnability of LEM; it may be the case that the specific parameter values required to model

35

the role of external negation in the context of NLI tasks cannot be reached by training on

any NLI dataset using gradient descent or any other currently known training procedures. It

may also be the case that the function of external negation is in fact learnable, but only via

the brute-force approach of training these models on multiple-depth external negation for

every such prefix. In other words, encoder transformers may not be capable of inductively

learning LEM—at least not with standard training procedures.

Hosseini et al. (2021) and Asai and Hajishirzi (2020) propose training procedures de-

signed to enhance language models’ ability to learn the role of negation, which may provide

fruitful avenues for improving transformer NLI models’ performance on the tasks laid out in

Experiments 1-3 (Sections 2.4, 2.5, 2.6). Hosseini et al. (2021) introduce unlikelihood with

reference training for masked language models, which penalizes models for predicting unlikely

tokens in negated contexts—for example, a model would be penalized for predicting fly in

the context “birds cannot [MASK]”. After unlikelihood with reference training, the authors

record marginal improvement (∼1-2%) for BERT on negation-augmented SNLI and MNLI

datasets (see Hossain et al., 2020).

Asai and Hajishirzi (2020) use logic-based regularization and data augmentation to improve

language models’ transitive and symmetric consistency (c.f. Jang, Kwon, and Lukasiewicz,

2022)—in particular, negation is subsumed under their notion of symmetric consistency.

Using this approach, the authors record marked improvement over the SoTA on a variety of

question-answering tasks, although they do not evaluate this regularization method on any

NLI datasets.

However, Hosseini et al. (2021) and Asai and Hajishirzi (2020) do not explicitly study

the efficacy of their respective training methods with respect to double-negation cancellation.

Therefore, it is unclear whether the improvements obtained by their approaches would

translate to a task such as LEM, and I leave an evaluation thereof to future work.

36

2.8 Conclusion

The results of Experiments 1-3 (Sections 2.4, 2.5, 2.6) demonstrate that near-SoTA transformer

NLI models struggle to inductively learn the law of the excluded middle (LEM). Furthermore,

the results of Experiment 1 (Section 2.4) strongly suggest that all six NLI models studied in

this work learned to treat the external negation prefix “it is not true that” as a distractor

when initially fine-tuned on the NLI dataset(s) (see Table 2.3). Experiment 1 also suggests

that DeBERTa and BART models are incapable of learning to inductively generalize LEM,

despite extensive fine-tuning.

These findings lend further support to a large body of existing evidence (e.g. Niven and

Kao, 2019; Naik et al., 2018; Yuan et al., 2023; Laverghetta Jr. et al., 2021; Rogers, Kovaleva,

and Rumshisky, 2020; Ettinger, 2020; Laverghetta Jr. and Licato, 2022; Kassner and Schütze,

2020) indicating that transformers are unable to model the meaning of negation. Unique

to this work is our finding that certain encoder transformers (in particular, RoBERTa) can

learn LEM for a single external negation prefix.

While the three RoBERTa models did manage to grasp the function of the prefix “it is not

true that”, the process of learning this behavior resulted in catastrophic forgetting, entirely

inhibiting their generalization of this pattern to the highly similar prefix “it is false that” (see

Sections 2.5 and 2.6).

Theorem 1 proves that encoder transformers are—in principle—capable of modeling LEM

for arbitrary-length sequences of any combination of external negation prefixes with respect

to any NLI dataset. This suggests that these superficial models’ inability to inductively learn

LEM might not be a consequence of their transformer architectures, but rather may result

from the (lack of) structure of their input data and/or the procedure used to train them.

In addition to exposing this critical weakness of near-SoTA NLI models, the experiments

in this chapter provide an excellent battery of tests with which to probe the language model

over logical forms that I introduce in Chapter 4 (see Chapter 6), and allow for a fine-grained

comparison between that model’s logical reasoning abilities and those of the superficial models

37

evaluated here.

2.9 Proof of Theorem 1

In this section, I formally prove Theorem 1 of Section 2.3: uninterested readers may safely

skip to Chapter 3. In Section 2.9.1, I discuss the fragment of first-order logic in which this

proof takes place, and introduce the notation that I employ in Section 2.9.2; the proof itself

is located in Section 2.9.3.

2.9.1 FOC[+;MOD]

Chiang, Cholak, and Pillay (2023) prove that FOC[+;MOD] (a variant of first-order logic

defined over strings over a finite alphabet Σ; see Immerman, 2012) is both an upper bound

for fixed-precision transformer encoders and a lower bound for arbitrary-precision encoder

transformer encoders, in the sense that every language that is recognizable by a fixed-

precision encoder transformer binary classifier is definable by a sentence of FOC[+;MOD]

(Chiang, Cholak, and Pillay, 2023, Theorem 2), and every language defined by a sentence of

FOC[+;MOD] is recognizable by an arbitrary-precision encoder transformer binary classifier

(Chiang, Cholak, and Pillay, 2023, Theorem 5). Given an FOC[+;MOD] formula ϕ, the

language defined by ϕ is the set of all strings σ ∈ Σ∗ such that ϕ holds with respect to σ.

The syntax of FOC[+;MOD] consists of two sorts:

• Positions : positive integer variables p that range over positions in strings σ.

• Counts : variables x ranging over the rational numbers, and terms c0 + c1x1 + · · ·+ cnxn,

where each ci is a (constant) rational number and each xi is a count variable.

Formulas of FOC[+;MOD] are defined as one of:

• ⊤ (true) or ⊥ (false).

38

• Qa(p), where a ∈ Σ, and Qa(p) := σp = a

• MODa
b (p), where a ≥ 0, b > 0, and p is a position variable; MODa

b (p) := p ≡b a

• ϕ ∧ ψ, ϕ ∨ ψ, or ¬ψ, where ϕ and ψ are formulas.11

• x1 = x2 or x1 < x2, where x1, x2 are in the sort of counts.12

• ∃x.ϕ or ∀x.ϕ, where x is a count variable and ϕ is a formula.

• ∃=xp.ϕ, where x is a count variable, p is a position variable (∃=xp.ϕ binds p but leaves

x free), and ϕ is a formula; ∃=xp.ϕ holds if and only if ϕ is true for exactly x values of

p.

Note that FOC[+;MOD] does not permit arithmetic operations (addition or multiplication)

or comparisons (=, <) of position variables, only of count variables. This is the primary

motivation for much of the machinery introduced in the proof of Theorem 1 (Section 2.9.3).

2.9.2 Notation

I now introduce additional notation employed in the proof of Theorem 1:

• σ || σ′: denotes the concatenation of the strings σ and σ′. Note that when convenient

(and unambiguous), I omit the operator and write σσ′ to denote σ || σ′.

•
n

||
i=k

(. . .): denotes iterated string concatenation.

• |σ|: unless otherwise specified, denotes the length of the string σ.

• σi: denotes the ith character of the string σ.
11We can derive ϕ→ ψ and ϕ↔ ψ as ψ ∨ ¬ϕ and ϕ→ ψ ∧ ψ → ϕ, respectively.
12We can derive x1 ≤ x2 as x1 = x2 ∨ x1 < x2, x1 > x2 as x2 < x1, x1 ≥ x2 as x2 ≤ x1, and x1 ̸= x2 as
¬(x1 = x2).

39

• Σ∗ =
∞⋃
i=1

Σi: denotes the set of all non-empty strings over the alphabet Σ. Note that

unless otherwise specified, I slightly abuse notation and let A∗ (for any A ⊆ Σ∗) denote

the set of “flattened” strings of A—i.e. A∗ =
∞⋃
i=1

⋃
a∈Ai

{
|a|
||

k=1

ak} so that for all a′ ∈ A∗,

a′ ∈ Σ∗.

• ϵ: denotes the empty string.

• σi:j =
j

||
k=i

σk: denotes the substring spanning the ith to jth (inclusive) characters of σ; if

i = j, then σi:j = σi.

• σi:, σ:j: denote σi:|σ| when i ≤ |σ| and σ1:j when j ≥ 1, respectively. If i > |σ|, then

σi: = ϵ.

• σn =
n

||
i=1

σ: denotes the string σ repeated n times (σ0 = ϵ).

• ϕ[x⇒ y] = λx.[ϕ](y): denotes the formula obtained from ϕ by replacing all instances

of the free variable x with the variable (or constant) y.

• [ϕ](σ) = σ |= ϕ: indicates that the formula ϕ holds for the string σ (i.e. σ belongs to

the language defined by ϕ).

2.9.3 Proof

Let Λ = {E ,N , C} denote the set of NLI labels and let Σ′ denote the input alphabet of (i.e.

set of tokens for) the transformer T—we may assume without loss of generality that Λ and

Σ′ are disjoint (i.e. Λ ∩ Σ′ = ∅); Theorem 1 applies only to encoder transformers, so we need

not consider the labeling approach taken by encoder-decoder or decoder-only transformers.

By Chiang, Cholak, and Pillay (2023) Theorem 2, T corresponds to the FOC[+;MOD]

formula ST defined in Equation 2.4. To be explicit: Chiang, Cholak, and Pillay (2023)

Theorem 2 guarantees that there exists some FOC[+;MOD] formula ST that defines the

language recognized by T . For each (Pk, Hk, Lk) ∈ D, the input to ST is the string PkHkLk:

40

for all x ∈ Λ, [ST](PkHkLk) holds if and only if the transformer T assigns the label Lk to

(Pk, Hk).

ST :=
∧
x∈Λ

ϕx ↔ ∃=1p.Qx(p) (2.4)

Note that we may assume the existence of ϕE , ϕN , and ϕC (and therefore ST) as in Equation

2.4 without loss of generality. Regardless of the approach that the particular transformer T

takes to predicting labels, the output of T with respect to an input σ ∈ (Σ′)∗ (OT (σ)) must

be an element of Λ. As such, for each x ∈ Λ and σ ∈ (Σ′)∗, [ϕx](σ) := OT (σ) = x.

Let Σ = Σ′ ∪ {Ω}, where Ω is a special padding character introduced for formal reasons,

and distinct from the actual padding character used by the transformer T . For any σ ∈ (Σ′)∗,

define f(σ) ∈ Σ∗ as follows in Equation 2.5, where w is the fixed input length specified in

Theorem 1.

f(σ) :=
|σ|+1

||
i=1

(Ωi−1 || σi: || Ωw−|σ|) (2.5)

For all integer count terms 1 < b ≤ w, define MODCb(a, x) as follows (Equation 2.6),

where a and x are count variables:

MODC1(a, x) := ⊤ (2.6a)

MODCb(a, x) :=
w∨

y=−w

yb+ a = x (2.6b)

Note that by Chiang, Cholak, and Pillay (2023) Theorem 1, we may assume without loss

of generality that each ϕx in Equation 2.4 is in normal form (for some integer k ≥ 0), as in

Equation 2.7.

ϕx = ∃z1 . . . ∃zk[
k∧

i=1

∃=zip.(ϕx)i ∧ χ] (2.7)

41

Where each (ϕx)i is quantifier-free and has no free count variables, and χ is quantifier-free.

Now, for each such (ϕx)i, construct α((ϕx)i) as follows: for each a ∈ Σ′ such that Qa(p)

appears in (ϕx)i, replace Qa(p) with Q′
a(p) as defined in Equation 2.8—where p is a position

variable in the former, and a count variable in the latter—and replace each instance of a

modular predicate MODx
y (p) with MODCy(x, p) (where again p is a position variable in the

former, and a count variable in the latter).

Q′
a(p) := ∃=pp′[Qa(p

′) ∧
w∨
i=1

(MODi
w(p

′) ∧ p = i)] (2.8)

Lemma 2.1. For any σ ∈ (Σ′)∗ such that |σ| ≤ w, all a ∈ Σ′, and all 1 ≤ p ≤ w:

[Q′
a(p)](f(σ))↔ [Qa(p)](σ)

Proof. First, assume [Qa(p)](σ) holds. By assumption, σp = a, so by construction (Equation

2.5), f(σ)yp = a for all 1 ≤ y ≤ p and f(σ)y′p = Ω for all y′ > p. Therefore [Qa(p)](σ) →

[Q′
a(p)](f(σ)) by definition (Equation 2.8).

Now, assume [Q′
a(p)](f(σ)) holds. By assumption and construction (Equation 2.5),

f(σ)yp = a for all 1 ≤ y ≤ p, so in particular f(σ)p = a. By construction, f(σ):|σ| = σ. This

implies that σp = a; therefore [Q′
a(p)](f(σ))→ [Qa(p)](σ).

Now, for any count variables p, z and any FOC[+;MOD] formula ϕ, define E(p, z, ϕ) as

follows (Equation 2.9).

42

Ei
1(p, ϕ) :=

i∧
j=1

ϕ[p⇒ mj] ∧mj ≤ w (2.9a)

Ei
2 :=

i−1∧
a=1

i∧
b=a+1

ma ̸= mb (2.9b)

Ei+2
3 (p, ϕ) := ∃m1 . . .mi+2[E

i+2
1 (p, ϕ) ∧ Ei+2

2] (2.9c)

E1
3(p, ϕ) := ∃m1.E

1
1(p, ϕ) (2.9d)

E0
3(p, ϕ) := ⊤ (2.9e)

E(p, z, ϕ) :=
w∨
i=0

(Ei
3(p, ϕ) ∧ z = i) (2.9f)

Where Ei
1(−,−), Ei

2, and Ei
3(−,−) are defined for all integers 1 ≤ i ≤ w, 2 ≤ i ≤ w, and

0 ≤ i ≤ w, respectively.

Now, for each (ϕx)i in Equation 2.7, define A((ϕx)i) as in Equation 2.10, where zi and p

are free count variables.

A1((ϕx)i) := E(p, zi, α((ϕx)i)) (2.10a)

A2((ϕx)i) := ¬∃y[y > zi ∧ E(p, y, α((ϕx)i))] (2.10b)

A((ϕx)i) := A1((ϕx)i) ∧ A2((ϕx)i) (2.10c)

Lemma 2.2. For any σ ∈ (Σ′)∗ such that |σ| ≤ w, all x ∈ Λ, and all (ϕx)i as in Equation

2.7: [∃zi∃=zip.(ϕx)i](σ)↔ [∃zi.A((ϕx)i)](f(σ))

Proof. First, note that (ϕx)i is quantifier-free and has no free count variables (Chiang, Cholak,

and Pillay, 2023, Theorem 1); therefore (ϕx)i consists only of positional (Qa(p)) and modular

(MODx
y (p)) predicates—where the only bound position variable is p—and logical operators

acting on them. A((ϕx)i) is constructed from (ϕx)i by replacing each instance of Qa(p) and

43

MODx
y (p) with Q′

a(p) and MODCy(x, p) (respectively), where p is a position variable in the

first pair of terms, and a count variable in the second.

By Lemma 2.1, [Qa(p)](σ)↔ [Q′
a(p)](f(σ)) for all 1 ≤ p ≤ w, where p is a position variable

in the left-hand side of the equation and a count variable in the right-hand side. Similarly,

for all p, x and all 1 ≤ y ≤ w, MODx
y (p)↔ MODCy(x, p) by construction (Equation 2.6),

where again p is a position variable in the left-hand side of the equation and a count variable

in the right-hand side.

Therefore, for all 1 ≤ p ≤ w, (ϕx)i holds with respect to σ if and only if α((ϕx)i) holds

with respect to f(σ).

By construction (Equation 2.9), E(p, z, ϕ) holds for any predicate ϕ with the count

variable p free if and only if there are ≥ z unique values of p such that ϕ holds. By definition

(Equation 2.10), A((ϕx)i) holds if and only if there are exactly zi values of p such that α((ϕx)i)

holds.

Now, for each ϕx in Equation 2.4, define A(ϕx) as in Equation 2.11.

A(ϕx) := ∃z1 . . . ∃zk[
k∧

i=1

A((ϕx)i) ∧ χ] (2.11)

Lemma 2.3. For all x ∈ Λ and all σ ∈ (Σ′)∗ such that |σ| ≤ w: [ϕx](σ)↔ [A(ϕx)](f(σ))

Proof. By Lemma 2.2, each A((ϕx)i) of Equation 2.11 holds for f(σ) if and only if each

(ϕx)i holds for σ. As such, for each bound count variable zi, the set of cardinality zi of

count values that make A((ϕx)i) true with respect to f(σ) is identical to the set of position

values that make (ϕx)i true with respect to σ. The predicate χ contains no position variables

(Chiang, Cholak, and Pillay, 2023, Theorem 1), and is defined identically in Equation 2.11 as

in Equation 2.7; therefore, χ (within A(ϕx)) holds for f(σ) if and only if χ (within ϕx) holds

for σ.

Now, for each external negation prefix η ∈ N , define ψη(i) and ψ′
η(i, j) as in Equation

2.12, where i, j are count variables and Q′
(−)(−) is defined as in Equation 2.8.

44

ψη(i) :=

|η|−1∧
k=0

Q′
ηk
(i+ k) (2.12a)

ψ′
η(i, j) := ψη(i) ∧ i+ |η| − 1 = j (2.12b)

Then define ψ(i) and ψ′(i, j) as in Equation 2.13, where i and j are count variables.

ψ(i) :=
∨
η∈N

ψη(i) (2.13a)

ψ′(i, j) :=
∨
η∈N

ψ′
η(i, j) (2.13b)

Now define ρ(i, j) as in Equation 2.14, where i and j are again count variables.

ρ1(k, a, b, i, j) := i ≤ a ≤ k ∧ k ≤ b ≤ j ∧ ψ′(a, b) (2.14a)

ρ(i, j) := ∀k[i ≤ k ≤ j → ∃a, b.ρ1(k, a, b, i, j)] (2.14b)

Lemma 2.4. For any σ ∈ (Σ′)∗ such that |σ| ≤ w, and all 1 ≤ i < j ≤ w: [ρ(i, j)](f(σ))↔

σi:j ∈ N∗—i.e. ρ(i, j) holds for f(σ) if and only if the span i→ j in σ is a sequence of one

or more external negation prefixes.

Proof. I first prove the right-to-left direction: σi:j ∈ N∗ → [ρ(i, j)](f(σ)). The proof proceeds

by induction. First, assume that σ is a single external negation prefix (i.e. σi:j ∈ N). Then

by assumption and definition (Equation 2.12), ψ′
σi:j

(i, j) holds; by definition (Equation 2.13),

this implies ψ′(i, j). For all i ≤ k ≤ j, let a = i, b = j: by definition (Equation 2.14),

ρ1(k, a, b, i, j) holds. This implies ρ(i, j). This proves the base case.

Now suppose σi:j = η || η′, with η ∈ N∗ and η′ ∈ N . By the inductive hypothesis,

ρ(i, i+ |η| − 1) holds. By the base case above, ρ(i+ |η|, j) holds. It now remains to prove

45

that ρ(i, i+ |η| − 1) ∧ ρ(i+ |η|, j)→ ρ(i, j). For all 1 ≤ k ≤ j, if k < i+ |η|, then there exist

a, b < i+ |η| such that ρ1(k, a, b, i, j) (by the validity of ρ(i, i+ |η| − 1)), and if k ≥ i+ |η|,

there exist a, b ≥ i+ |η| such that ρ1(k, a, b, i, j) (by the validity of ρ(i+ |η|, j)); therefore,

ρ(i, j) holds. This proves the induction step.

I now prove the right-to-left direction by contradiction: assume ρ(i, j) and σi:j /∈ N∗. By

assumption, there exists η ∈ N∗ ∪ {ϵ} such that η is a substring of σi:j. For all i ≤ k ≤ j

such that σk is not contained within η: ¬∃a, b.ρ1(k, a, b, i, j), by the assumption that external

negation prefixes do not overlap (see Theorem 1). Therefore, ρ(i, j) does not hold—this is a

contradiction.

Now define ρ′(i, j) as in Equation 2.15.

ρ′1(a, b, i, j) := (a ≤ i ∧ b > j) ∨ (a < i ∧ b ≥ j) (2.15a)

ρ′2(a, b, i, j) := a > 1 ∧ ρ′1(a, b, i, j) (2.15b)

ρ′(i, j) := ρ(i, j) ∧ ¬∃a, b[ρ′2(a, b, i, j) ∧ ρ(a, b)] (2.15c)

For all x ∈ Λ, define F1(x) as in Equation 2.16.

F1(x) := ¬∃i, j[j > i > 1 ∧ ρ′(i, j)] ∧ A(ϕx) (2.16)

F1(x) is intended to coincide with ϕx on any (Pk, Hk, Lk) ∈ D—i.e. an example in which

the hypothesis is not externally negated. The term j > i > 1 in Equation 2.16 allows for the

possibility that the premise Pk may be externally negated in the original dataset D.

Lemma 2.5. For all x ∈ Λ and all σ ∈ (Σ′)∗ such that |σ| ≤ w and there does not exist

η ∈ N∗ such that η is a subsequence of σ2:: [ϕx](σ)↔ [F1(x)](f(σ))

Proof. By Lemma 2.3, [ϕx](σ)↔ [A(ϕx)](f(σ)). By assumption, ¬∃i, j[j > i > 1 ∧ ρ′(i, j)]

holds for all such f(σ).

46

Now, define A′(ϕx) by replacing each predicate Q′
a(p) in A(ϕx) (Equation 2.11) with

β(Q′
a(p)), as defined in Equation 2.17, where i and j are free count variables in A′(ϕx).

β1(Q
′
a(p)) := p < i ∧Q′

a(p) (2.17a)

β2(Q
′
a(p)) := p ≥ i ∧Q′

a(p+ (j − i) + 1) (2.17b)

β(Q′
a(p)) := β1(Q

′
a(p)) ∨ β2(Q′

a(p)) (2.17c)

Lemma 2.6. For all (Pk, Hk, Lk) ∈ D, all x ∈ Λ, and all η ∈ N∗ such that |PkηHk| ≤ w:

[ϕx](PkHk)↔ [A′(ϕx)](f(PkηHk)) when the free variables i = |Pk|+ 1, j = |Pkη| in Equation

2.17.

Proof. I first prove that [A(ϕx)](f(PkHk)) ↔ [A′(ϕx)](f(PkηHk)). Note that A′(ϕx) is

constructed from A(ϕx) by replacing each instance of Q′
a(p) with β(Q′

a(p)). It therefore suffices

to prove that for all a ∈ Σ′ and all 1 ≤ p ≤ w: [Q′
a(p)](f(PkHk))↔ [β(Q′

a(p))](f(PkηHk)).

If p ≤ |Pk|, then [Q′
a(p)](f(PkHk)) ↔ [β(Q′

a(p))](f(PkηHk)) by definition (Equation

2.17). Otherwise, [Q′
a(p)](f(PkHk)) ↔ [β(Q′

a(p))](f(PkηHk)) if and only if (PkHk)p =

(PkηHk)p+(j−i)+1. By assumption, p+ (j − i) + 1 = p+ (|Pkη| − (|Pk|+ 1)) + 1 = p+ |η| and

(PkHk)p = (PkηHk)p+|η|.

By Lemma 2.3 and the above result, we have: [ϕx](PiHi) ↔ [A(ϕx)](f(PiHi)) ↔

[A′(ϕx)](f(PiηHi)).

Now, define F2(x) as in Equation 2.18, where G(E) = C, G(C) = E , and G(N) = N .

47

γ1x(n) :=MODC2(1, n) ∧ A′(ϕG(x)) (2.18a)

γ2x(n) :=MODC2(0, n) ∧ A′(ϕx) (2.18b)

γ3x(k) := i ≤ k ≤ j ∧ ψ(k) (2.18c)

γ4x(n) := E(k, n, γ3x(k)) (2.18d)

γ5x(n) := ¬∃y[y > n ∧ E(k′, y, γ3x(k′))] (2.18e)

γx := ∃n[γ4x(n) ∧ γ5x(n) ∧ (γ1x(n) ∨ γ2x(n))] (2.18f)

F2(x) := ∃i, j[j > i > 1 ∧ ρ′(i, j) ∧ γx] (2.18g)

Lemma 2.7. Define N0, N1 ⊂ N∗ as the sets of even- and odd-length—in terms of number

of prefixes, rather than characters—sequences of external negation prefixes, respectively. Then

for all x ∈ Λ and all (Pk, Hk, Lk) ∈ D:

i. for all η ∈ N0: [ϕx](PkHk)↔ [F2(x)](f(PkηHk))

ii. for all η′ ∈ N1: [ϕG(x)](PkHk)↔ [F2(x)](f(Pkη
′Hk))

Proof. I first prove (i). By Lemma 2.4 and the definition of ρ′(i, j) (Equation 2.15), the

respective values of i, j that make the term j > i > 1 ∧ ρ′(i, j) hold in Equation 2.18 are

i = |Pk| + 1 and j = |Pkη|. By the definitions of E(k, n,−), ψ(−), and γx (Equations

2.9, 2.13, and 2.18, respectively)—and the assumption that η ∈ N0—the value of n that

makes [γx](f(PkηHk)) hold is even. Therefore, the term MODC2(0, n) in γ2x(n) holds, and

so [A′(ϕx)](f(PkηHk))↔ [F2(x)](f(PkηHk)).

By Lemma 2.6 and the above result, we have: [ϕx](PkHk) ↔ [A′(ϕx)](f(PkηHk)) ↔

[F2(x)](f(PkηHk)).

I now prove (ii); the proof proceeds in a similar fashion as that of (i) above. But now n

is odd, and so the term MODC2(1, n) in γ1x(n) holds. Therefore, [A′(ϕG(x))](f(Pkη
′Hk))↔

[F2(x)](f(Pkη
′Hk)).

48

Again by Lemma 2.6 and the above result: [ϕG(x)](PkHk) ↔ [A′(ϕG(x))](f(PkηHk)) ↔

[F2(x)](f(PkηHk)).

For all x ∈ Λ, define F (x) as follows (Equation 2.19).

F (x) := F1(x) ∨ F2(x) (2.19)

Now, define the formula ST ′ in Equation 2.20 below.

ST ′ :=
∧
x∈Λ

F (x)↔ ∃=1p.Qx(p) (2.20)

Lemma 2.8. For all (Pk, Hk, Lk) ∈ D, all η ∈ N0 such that |PkηHk| ≤ w, and all η′ ∈ N1

such that |Pkη
′Hk| ≤ w:

i. [ST ′](f(PkHk)Lk)↔ [ST](PkHkLk)

ii. [ST ′](f(PkηHk)Lk)↔ [ST](PkHkLk)

iii. [ST ′](f(Pkη
′Hk)G(Lk))↔ [ST](PkHkLk)

Proof. By Lemma 2.5, [F1(Lk)](f(PkHk)) holds if and only if [ϕLk
](PkHk) does as well, for

all (Pk, Hk, Lk) ∈ D. F2(x) does not hold for any x ∈ Λ by definition (Equation 2.18), and

[F1(x)](f(PkHk))↔ [ϕx](PkHk) for any x ∈ Λ− {Lk} by Lemma 2.5. This proves (i).

For all η ∈ N0 such that |PkηHk| ≤ w, [F1(x)](f(PkHk)) does not hold for any x ∈ Λ

by definition (Equation 2.16), and [F2(x)](f(PkHk))↔ [ϕx](PkHk) for all x ∈ Λ by Lemma

2.7(i). This proves (ii).

For all η′ ∈ N1 such that |Pkη
′Hk| ≤ w, [F1(x)](f(PkHk)) does not hold for any x ∈ Λ

by definition, and [F2(x)](f(PkHk))↔ [ϕG(x)](PkHk) for all x ∈ Λ by Lemma 2.7(ii). This

proves (iii).

By Chiang, Cholak, and Pillay (2023) Theorem 5, there exists a transformer encoder T ′′

that recognizes the language defined by ST ′ . By Lemma 2.8(i), Acc(T ′′, f(D)) = Acc(T,D),

49

and Acc(T ′′, {f(PiηHi)}i∈I) = Acc(T,D) for any η ∈ N∗ such that maxi∈I |PiηHi| ≤ w by

Lemma 2.8(ii-iii).

But T ′′ is an arbitrary-precision transformer. It remains to show that we can derive

a fixed -precision transformer T ′ from T ′′. Note that by definition (Equation 2.5), for any

σ ∈ (Σ′)∗ such that |σ| < w: |f(σ)| = w(|σ| + 1). By assumption (Theorem 1), no input

example—challenge or otherwise—exceeds the fixed, finite w > maxi∈I |PiHi| in length.

Within the assumptions of Theorem 1, it follows that the upper bound on the length of

possible inputs to T ′′ is w2 + w.

By definition, the floating-point precision of an arbitrary-precision transformer varies

as a function of input length. Let π : N → N be the function mapping input length to

floating-point precision (in bits) of T ′′—presumably, π is monotone-increasing, but it need

not be. Define T ′ as T ′′ with floating-point precision fixed at max1≤n≤w2+wπ(n).

This completes the proof of Theorem 1.

50

Chapter 3

Formal-Logical Distributional Semantics

(FoLDS)1

In this chapter, I aim to motivate the use of language models over logical forms—in particular,

the larger, graph-based neural model introduced in Chapter 4. In Section 3.1, I briefly

overview the fields of formal and distributional semantics, and discuss related work in merging

these two representational paradigms.

I introduce the simple, prototype Formal-Logical Distributional Semantics (FoLDS) model

in Section 3.2: a non-neural, distributional model that generates complex-valued word

vectors drawn from a fuzzy-logical model world imperatively constructed from logical-form

representations. I argue that the use of logical-form inputs has a syntactic de-noising effect, as

such representations equivalence-class the myriad surface realizations of a given proposition.

This permits models over logical forms such as FoLDS to generate meaningful representations

from less data than their superficial counterparts, which must learn to equate these various

periphrastic realizations.

Additionally, I posit that the explicit representation (i.e. de-noising) yielded by the

function-argument structure inherent in logical forms allows for greater sensitivity to critical
1An abridged version of this chapter has been published in Sullivan (2023).

51

logical operators such as negation. In the case of FoLDS, this sensitivity to negation is

encoded via its complex-valued embeddings, which permit a complex-valued similarity metric,

allowing the model to leverage two axes of similarity simultaneously: antonymy/synonymy

and relatedness.

I then show in Section 3.3 that FoLDS outperforms several competing superficial ap-

proaches—that require significantly more data—on a downstream task. This result—in

combination with the performance of the larger, neural model of Chapter 4 (see Chapter

5)—provides converging evidence from multiple methodologies in support of the Accelerated

Learning Hypothesis of Chapter 1, and towards the efficacy and practical utility of language

modeling over logical forms.

3.1 Background and Related Work

There are two main approaches to the problem of formally representing the meaning of

natural language utterances (Boleda and Herbelot, 2016): formal/symbolic (logical for-

mulas; Section 3.1.1) and distributional (vector encoding; Section 3.1.2). In this section,

I compare the respective advantages and drawbacks of both methods, in order to moti-

vate formal-distributional semantics (Section 3.1.3), a broadly-defined research program of

models—including FoLDS—that aim to consolidate these two approaches.

3.1.1 Formal Semantics

Formal semantics is a broad and interdisciplinary field that incorporates concepts from—and

finds applications in—linguistics, philosophy, computer science, mathematical logic, and

cognitive psychology (Lewis, 1976). For the purposes of the discussion at hand, I limit this

exposition to those aspects of formal semantics that pertain to computational linguistics and

NLP.

While there are multiple logical systems that serve as an underlying basis for formal

52

semantic representations (first/higher order predicate calculus, intuitionistic logic, etc.;

Fine, 2014), all variants of formal semantic representation are designed to model the state

of affairs that is described by a given utterance by mapping that utterance to explicitly

defined logical formulas with interpretable truth conditions (Winter, 2016). Because natural

language expressions map to sentences in a symbolic logic in formal-semantic frameworks, it is

rather (conceptually, if not computationally) straightforward to compute their truth-validity

(Boleda and Herbelot, 2016). Such readily-computable truth values have obvious benefits for

computational linguistics/NLP tasks such as question-answering: a binary (yes/no) question

is true if its corresponding logical formula is as well, the answer to a wh-question is the set of

all entities, propositions, events, or situations that make that logical formula true, and so

on (Lopez et al., 2007). Additionally, logical formulas have the effect of equivalence-classing

syntactic paraphrases (see Section 3.2.1): an active sentence and its passive or topicalized

counterparts are mapped to the same symbolic representation, etc.

These representations of meaning, however, can be difficult to employ computationally

at scale: they require semanticists to construct not only an entire grammar—in particular,

mappings from syntactic structures to logical representations—and a lexicon that includes all

possible senses of a given word, but also a reasonably accurate set- or type-theoretic model of

the entire known universe (Bos, 2011). Furthermore, there is no known way to quantitatively

compare the similarity of two logical formulas. While it is possible to verify that two formulas

are logically equivalent, incompatible, unrelated, or that one implies the other, a finer-grained,

continuous similarity metric—such as those that arise in distributional semantics—does not

exist between logical formulas.

3.1.2 Distributional Semantics

Conversely, distributional representations are designed to essentially crowd-source—and

thus facilitate—the encoding of meaning by data-mining a set of documents and producing

vector representations of words, sentences, and documents derived, ultimately, from co-

53

occurrence statistics between words and the contexts in which they appear (Lenci, 2018).

These representations allow us to compute the similarity between any two word, sentence, or

document vectors using metrics such as the vector dot product (i.e. cosine similarity/distance)

and Euclidean distance (Aerts, Kitto, and Sitbon, 2011).

However, these encodings are superficial—i.e. directly derived from surface text—and

therefore reflect only syntactic properties of the words, sentences, and documents that

they represent. While patterns in the surface text can reflect semantic properties, vector

embeddings do not directly correspond to the underlying meanings of the linguistic units that

they represent (see e.g. Withagen et al., 2012; Jones et al., 2022). A direct consequence of

this fact is that the similarity metrics that accompany these representations purely measure

textual—rather than truly semantic—similarity. Another potentially significant drawback

to distributional approaches is that there is no known way to compute the truth value of

a meaning vector (Boleda and Herbelot, 2016), which presents a potential impediment to

distributional models’ ability to perform inferencing and logical-reasoning tasks: for example,

Borji (2023) shows that ChatGPT is prone to logical and factual errors, such as insisting

that it is not possible to know what the gender of the first female President of the United

States will be.

3.1.3 Formal-Distributional Semantics

The framework of Formal-Distributional Semantics (FDS) encompasses a broad range of

approaches to fusing formal and distributional semantics, with the goal of addressing the

respective drawbacks of formal and distributional approaches to natural language semantics,

and unifying their advantages (Boleda and Herbelot, 2016). FDS can be divided into

two subfields: F-first FDS, in which formal logic constitutes the basis of the semantic

framework and distributional representations are incorporated by licensing inferences between

distributionally similar terms, and D-first FDS, in which logical operators are conceived

as (multi-)linear mappings that act directly on distributional representations (Boleda and

54

Herbelot, 2016).

Erk (2016). In one such implementation of F-first FDS, Erk (2016) uses distributional and

formal semantics in order to model speakers’ probabilistic information states. The central

notion is that human beings have (at least) two categories of world knowledge: that which has

been directly observed and/or stated, and that which has been inferred probabilistically from

the first category, using our knowledge of the similarity of word usage in linguistic contexts.

Erk (2016) first uses the McRae et al. (2005) feature norm database to generate a model

world G. A feature norm database (see Section 3.3.1) consists of a set of concepts (words)

and a set of features, in which each concept w is assigned a feature vector F (w) ∈ Rn, where

n is the number of features in the database. The value of F (w)Q is the value of the feature

Q for the word w. In the McRae et al. (2005) database, feature values are obtained from

experiment participants’ judgments, so that F (w)Q represents the proportion of participants

(out of thirty) who said that the word w has the property Q. Note that in this database,

properties are elicited: the participants were asked to list all of the properties that come to

mind for each word (as opposed to choosing relevant properties from a predefined list).

Using the words and feature values from the McRae et al. (2005) database, Erk’s (2016)

model G is generated as follows: for each word w, there are thirty entities x such that w(x)

holds in G. For each property Q, there are F (w)Q · 30 entities x such that w(x) ∧ Q(x)

holds in G. For example, F (knife)utensil = 0.634 (19/30), so there are 30 entities x such that

knife(x) holds in G and, of those 30 entities, there are 19 such that utensil(x) also holds in

G.

Erk (2016) then uses linear regression to infer the best relationship between property

overlap—i.e. overlap of extensions—in G and distributional similarity for any two words w

and u. In this framework, a speaker’s information state is modeled as a set of randomly-

generated first-order logical (FOL) models U . For each model M ∈ U , Erk (2016) uses

the above-mentioned linear regression model to perform a Bayesian update, which yields a

55

probability P (M): the speaker’s belief that M is the “real world”. Given a proposition ϕ, the

speaker’s belief P(ϕ) that ϕ is true in the "real world" is defined in Equation 3.1 below.

P(ϕ) =
∑

M∈{M ′∈U | [[ϕ]]M′}

P (M) (3.1)

In words: P(ϕ) is equal to the sum of the probabilities of all model worlds M ∈ U such

that ϕ is true in M .

However, due to the fact that all of the probabilities mentioned above are defined in terms

of traditional distributional word vectors, they are still affected by the noise resulting from

those embeddings’ shortcomings: insensitivity to negation, word order, syntactic paraphrases,

affordances, and so on (see e.g. Withagen et al., 2012; Ettinger, 2020; Chaves and Richter,

2021; Jones et al., 2022). Additionally, this framework can only generate inferences regarding

universally-quantified statements involving unary predicates.

Herbelot and Copestake (2021). In another approach to F-first FDS, Herbelot and

Copestake (2021) eschew traditional distributional embeddings generated from surface text

in corpora, and instead employ vector representations generated directly from a logical model

world M . In this framework, each word (predicate) w is represented by a vector v(w) ∈ Rn,

where n is the number of entities in the domain. For each 1 ≤ i ≤ n, the value of v(w)i = 1

if w(ei) is true in M of the ith entity ei, and v(w)i = 0 otherwise. Basic logical operators

(negation, conjunction, disjunction, etc.) can then be defined in terms of operations on these

vector representations. Herbelot and Copestake (2021) find that these logical embeddings

are highly effective at modeling elementary semantic relations such as hyponymy, synonymy,

and antonymy. For example, let v ⊙ w denote the Hadamard product (Kim et al., 2016)

between two vectors v and w, where (v⊙w)i = vi ·wi. Then v is a hyponym of w if and only

if v ⊙ w = v.

One significant drawback to Herbelot and Copestake’s (2021) approach is that it can

only be implemented with respect to a so-called “ideal” model M . The binary (0/1) logical

56

vectors that this approach employs are incompatible with the noisy and contradictory nature

of real-world corpus data. As such, the authors are only able to employ this method with a

toy-example, hand-constructed model M .

Venhuizen et al. (2022). Similarly, Venhuizen et al. (2022) introduce an F-first FDS model

in which propositions—rather than predicates—are represented as binary vectors. These

authors employ a constraint-based generation process to generate a set of K model worlds

{Mi}1≤i≤K : for each proposition ϕ with corresponding embedding ⃗v(ϕ), the ith coordinate

⃗v(ϕ)i = 1 if and only if ϕ holds in Mi (otherwise, ⃗v(ϕ)i = 0). Venhuizen et al. (2022)

then train a Simple Recurrent Neural Network (SRN; Elman, 1990) over these carefully-

crafted embeddings, yielding a model that can generate probabilistic embeddings over unseen

propositions.

However, Venhuizen et al.’s (2022) model still suffers from many of the same drawbacks

as that of Herbelot and Copestake (2021). Although their use of an SRN yields a more

flexible model, a set of hand-crafted constraints is still needed to generate the set of worlds

Mi: the SRN model can only generalize to unseen propositions, not to unseen predicates and

entities—in order to incorporate new predicates and entities into this model, it is necessary

to hand-craft additional relevant constraints for model-world generation.

Grefenstette et al. (2014). In Grefenstette and Sadrzadeh (2011), the authors construct a

compositional model for distributional semantics (D-first FDS). These authors use traditional

distributional embeddings to model word meanings, which are then composed together to

form sentence vectors. In this paradigm, a categorial grammar (Steedman, 1993) provides the

syntactic combinatorics that guide semantic composition in a parallel, step-by-step fashion.

This is similar to the semantic combinatorics typically employed by categorial grammars such

as Hybrid Type-Logical Categorial Grammar (Kubota, 2010; Kubota and Levine, 2020), the

key difference being that distributional vectors, rather than classical logical terms, provide

the underlying lexical semantics.

57

This framework draws heavily on concepts from quantum physics: for example, a sentence

vector is modeled as a superposition of its constituent words, in the sense that each word

vector is viewed as a quantum state, and the sentence is a mixture (i.e. tensor product; Marcus

and Moyls, 1959) of these states.

While theoretically interesting, this model requires many of its components to be defined

by hand, and the advantages that such compositional sentence vectors provide over those

generated by a neural LM such as BERT (Devlin et al., 2019) remain unclear.

Emerson (2018). The D-first FDS framework of Emerson (2018), employs neural models

that take Dependency Minimal Recursion Semantics (DMRS; Copestake et al., 2016) situation

graphs as input, and return probability distributions over predicates in the domain.

Take, for example, the DMRS situation graph in Figure 3.1, where X and Z denote

entities, and Y denotes an event variable. The individuals (i.e. entities and events) X, Y , and

Z are represented by randomly-sampled, binary-valued individual embeddings. Each edge

label (e.g. ARG1, ARG2) is represented by a Cardinality-Restricted Boltzmann Machine

(Swersky et al., 2012) that learns a joint distribution over individuals: for example, the

probability PARG1 (X, Y) that the entity X occurs as the first-place argument of the event Y .

The model then uses one-layer, logistic feed-forward networks over these entity embeddings

to yield three probability distributions Tr,X , Tr,Y , and Tr,Z for each predicate r, corresponding

to the probabilities that r(Y, –, Z), r(–, X, Z), and r(Y,X, –) are true of X, Y , and Z,

respectively.

Figure 3.1: DMRS situation graph.

This method achieves competitive results on lexical and contextual similarity tasks, and

uses significantly less training data than language models such as BERT and GPT-3. There

are, however, a few shortcomings to this approach. In particular, it can only account for

58

simple sentences—i.e. those without relative clauses or adjuncts—involving intransitive or

transitive verbs, and requires a “precisely annotated”, hand-built corpus of DMRS structures

for its training procedure.

3.2 The FoLDS Model

In this section, I discuss both the motivation for and architecture of the FoLDS model, which

generates complex-valued word vectors—permitting a two-dimensional similarity metric (see

Section 3.2.5)— drawn from a fuzzy-logical model world imperatively constructed from logical

formulas via a recursive procedure (Section 3.2.4). To obtain these logical formulas, I first

parsed a set of documents (discussed in Section 3.3.3) into Minimal Recursion Semantics (MRS;

Copestake et al., 2005) representations (Section 3.2.2). However, due to their underspecified

nature, MRS structures are not suitable for constructing a model world, necessitating their

conversion into an intermediate representation, which I describe in Section 3.2.3.

The FoLDS model is primarily intended to be used for (quasi-)logical inference: the key

idea behind this model is to consider logical distributional co-occurrence in order to capture

and predict logical properties—as opposed to traditional distributional models, which consider

textual distributional co-occurrence in order to capture and predict textual properties—while

avoiding the brittle nature of similar models (e.g. Herbelot and Copestake, 2021; see Section

3.1.3) that prohibits their use with real-world data.

3.2.1 Distributional Semantics over Logical Forms

As discussed in Chapter 1, I argue that co-occurrence statistics should be equivariant

with respect to syntactic paraphrases—non-canonical constructions such as passivization,

topicalization, etc. (Colin and Gardent, 2018)—in order to more efficiently capture meaning

via distributional methods. For example, the active sentence in Example 1a should belong to

the same equivalence class as its passive counterpart in Example 1b.

59

Example 1.

(a) Tahitian natives feasted on

(b) was feasted on by Tahitian natives

Clearly, Examples 1a-b are not the same context for a superficial distributional model.

On the other hand, converting both examples to an FOL-typed λ-calculus representation

yields the exact same formula: namely, λx.feast-on(tahitian-natives , x).

Intuitively, treating logical formulas as distributional contexts should decrease the amount

of training data required to obtain accurate embeddings, as the larger amounts of data

required to learn to equate passive constructions and their active counterparts are no longer

necessary (c.f. the Accelerated Learning Hypothesis of Chapter 1). Additionally, Herbelot

and Copestake (2021) demonstrate that distributional embeddings obtained from logical-form

descriptions of model-theoretic representations of events and situations are highly effective

at modeling elementary semantic relations such as hyponymy, synonymy, and antonymy (as

discussed in Section 3.1.3).

FoLDS therefore constructs embeddings from logical-form representations of sentences,

rather than directly from surface text—as in Emerson (2018) and Herbelot and Copestake

(2021). Unlike the models introduced by those authors, however, FoLDS utilizes an automated

process to generate these logical representations, which greatly increases its potential for

scalability.

I additionally argue that negation carries a unique function in natural language semantics:

as seen in Chapter 2, superficial distributional models struggle to model this function. To

illustrate this point, consider the two sentences in Examples 2a-b: this pair of sentences

increases the superficial distributional similarity between herbivore and carnivore—many of

the words in those two sentences are the same—when in fact they are antonymous. Superficial

LMs are known to be insensitive to negation (see Chapter 2) and word order (Ettinger, 2020),

and so these models are inherently less capable of detecting the evidence of antonymy between

60

herbivore and carnivore that Examples 2a-b contribute than a negation-sensitive architecture

such as FoLDS.

Example 2.

(a) Alligators are not ever considered herbivores, even when food is scarce

(b) Alligators are always considered carnivores, even when food is scarce

While Examples 2a-b suggest that herbivore and carnivore are antonymous, they do not

indicate that the terms are unrelated. Inferences can still be drawn from antonymous but

related categories: for example, given that carnivore has a property such as eats-meat, a model

should be able to leverage the antonymy between carnivore and herbivore to hypothesize

that herbivore does not have that property.

There is a crucial distinction to be drawn between synonymy/antonymy and relatedness.

Unrelated categories should not contribute to the inference of properties: for example,

properties of duct tape should have no bearing on the estimation of properties of alligator.

Examples 2a-b demonstrate that negation is crucial for detecting antonymy, and the

above two points suggest the utility of a two-dimensional similarity metric that measures

both synonymy/antonymy and relatedness. The de-noising effect of the function-argument

structure of logical forms provides the means to systematically detect negation and incorporate

it into the model’s embeddings: unlike other logical operators such as conjunction, disjunction,

implication, and quantifiers, I do not remove negation from the logical structures described

in Sections 3.2.2 and 3.2.3 below, in order to better capture antonymy and facilitate the

two-dimensional FoLDS similarity metric.

3.2.2 From Textual to MRS Representations

The first step towards generating the logical formulas that serve as distributional contexts

in the FoLDS model is to parse the raw text into Minimal Recursion Semantics (MRS;

Copestake et al., 2005) representations, and augment these MRS structures with additional

61

information such as coreference data (3.2.2.2). In Section 3.2.2.1, I provide a brief overview

of the structure of MRS representations in order to facilitate understanding of the remainder

of Section 3.2: I refer interested readers to Copestake et al. (2005) for a more in-depth

description of MRS and its applications.

3.2.2.1 Minimal Recursion Semantics (MRS)

MRS is a framework for representing natural language semantics in a computationally-

tractable and underspecified manner. In this framework, elementary predications (EPs)—i.e.

predicates and quantifiers—are organized into implicitly-conjoined lists that are referred

to as handles. For example, the handle h1 : big(x),white(x), horse(x) has the label h1,

and is interpreted in FOL as big(x) ∧ white(x) ∧ horse(x). Quantifier scope in MRS is

underspecified, meaning that, for example, the MRS representation corresponding to “every

student read a book ” in Equation 3.2 can be translated to FOL as either ∀x[student(x) →

∃y[book(y) ∧ read(x, y)]] or ∃y[book(y) ∧ ∀x[student(x)→ read(x, y)]].

h1 : every(x, h2, h3)

h4 : a(y, h5, h6)

h7 : student(x)

h8 : read(x, y)

h9 : book(x)

h2 =q h7, h5 =q h9

(3.2)

In the MRS structure in Equation 3.2, every(x, h2, h3) indicates that x is the bound

variable, h2 is the restriction, and h3 is the nuclear scope of the quantifier every. Note the

flat structure of this representation: no EP or handle directly scopes over another, and the

entire structure is simply a list of handles and their corresponding EPs.

62

Although h2 is the restriction of the quantifier EP every, there are no EPs that belong to

the handle h2—clearly, h7 should be the restriction of every. To account for this, h2 and h7

are linked via the equality modulo quantifiers (qeq) relation: h2 =q h7. This relation indicates

that h2 should be treated as equivalent to h7 for the purpose of determining quantifier scope,

but that other quantifiers may intervene between h2 and h7.

To motivate the use of the qeq relation in MRS, take, for example, the sentence “every

nephew of some politician runs”. There are two possible representations of this sentence in

FOL: ∀x[∃y[politician(y)∧ nephew(x, y)]→ run(x)] or ∃y[politician(y)∧∀x[nephew(x, y)→

run(x)]]. In MRS, this sentence is represented as in Equation 3.3.

h1 : every(x, h2, h3)

h4 : some(y, h5, h6)

h7 : politician(y), nephew(x, y)

h8 : run(x)

h2 =q h7, h5 =q h7

(3.3)

Note that politician(y) and nephew(x, y) both belong to the handle h7, and that h2 =q h7

and h5 =q h7: every and some both scope over h7, but either one can scopally intervene

between h7 and the other.

In MRS, all logical operators are represented as EPs. For example, “Sally sees Mary or

John” is (roughly) represented in MRS with the EPs see(sally , x) and or_c(x,mary , john)—i.e.

x is the variable corresponding to either mary or john. The sentence “Sally sees Mary and

John” is represented in a similar fashion, but with the EP and_c in place of or_c. To account

for the scopal ambiguity inherent in negation constructions2, negation (expressed by the EP

neg(–)) scope is left underspecified, in the same manner as for quantifiers.
2For example, the sentence “all of the students didn’t read Harry Potter ” has two possible interpretations:

¬∀x[student(x)→ read(x, harry-potter)] or ∀x[student(x)→ ¬read(x, harry-potter)].

63

3.2.2.2 Parsing and Coreference Alignment

Turning to the discussion of the FoLDS pipeline, I first passed each document in the corpus

(see Section 3.3.3) through the Spacy NeuralCoref 3 coreference resolution module, which

returns a set of instances : 4-tuples (c, s, e,m) denoting referring expressions, where c is the

coreference cluster index—all referring expressions that refer to the same discourse entity

belong to the same coreference cluster. The middle two values, s and e, are the start and end

character indices (respectively), and indicate the span of text corresponding to the referring

expression in question. The last element, m, is a binary (true/false) value that indicates

whether the instance is a main instance: usually the most specific mention of the entity in

the coreference cluster—e.g. a proper name, NP modified by a relative clause, etc.— that

serves as the anchor that all other instances in the cluster refer to.

Following coreference resolution, I then passed the documents through the Spacy Sen-

tenceRecognizer 4 sentence-segmentation pipeline and applied the ACE ERG (Copestake and

Flickinger, 2000) parser5 to each sentence to obtain its MRS representation. Each quantifier-

type EP in the MRS structure was then assigned a coreference cluster, as determined by

NeuralCoref.

I used a heuristic procedure to identify the most likely MRS quantifier that each referring

expression in a coreference cluster corresponds to: as a neural model, NeuralCoref is somewhat

noisy, and so the referring expressions that it identifies do not necessarily align one-to-one

with the NPs identified by the ERG parser. Each MRS EP contains a lnk value: a pair (s, e)

denoting the start and end character indices of the span of text corresponding to that EP. I

assigned to each quantifier Q an expanded lnk value (sQ, eQ), denoting the left-most start

and right-most end indices (respectively) of all EPs contained within the restriction of Q.

The resulting expanded pair (sQ, eQ) roughly corresponds to the entire NP that constitutes

the restriction of the quantifier Q.
3https://spacy.io/universe/project/neuralcoref
4https://spacy.io/api/sentencerecognizer
5ERG-1214 release: https://github.com/delph-in/erg

64

https://spacy.io/universe/project/neuralcoref
https://spacy.io/api/sentencerecognizer
https://github.com/delph-in/erg

To align NeuralCoref instances with MRS quantifiers, I developed and employed the

pseudo-Euclidean distance (DistPE) metric defined in Equation 3.4.

DistPE ((s1, e1), (s2, e2)) =
√
(s1 − s2)2 + |e1 − e2| (3.4)

Pseudo-Euclidean distance is defined similarly to the standard Euclidean distance, but

places more weight on the left-hand side (the start indices s1, s2): this is because English

noun phrases (NPs) tend to have their heads closer to the left-hand edge. Given a referent

identified by NeuralCoref that starts at character s1 and ends at character e1, and a quantifier

span identified by ERG that starts at character s2 and ends at character e2, the primary factor

in determining the pseudo-Euclidean distance between the two is the difference between s1

and s2. The difference between e1 and e2 essentially serves as a tie-breaker between referring

expressions that were determined by NeuralCoref to have similar start indices.

To illustrate this process, consider the sentence in Example 3, where the brackets denote

NP referents, and the underlined portions indicate spans of text identified by NeuralCoref as

belonging to some coreference cluster c.

Example 3.

[the dog who loved [the boy] and [the girl]] chased his tail

In Example 3, the underlined span S = “who loved the boy and ” and “his” both belong

to the same coreference cluster, but NeuralCoref has erroneously truncated the span. Note

that the span D = “the dog who loved the boy and the girl ” starts at character 0 and ends at

character 38, the span B = “the boy” starts at character 18 and ends at character 25, and S

starts at character 8 and ends at character 29. Using Euclidean distance, DistE(S,D) = 12.04

and DistE(S,B) = 10.77: the boy (B) is closer to S than the dog (D) and will therefore be

(incorrectly) assigned to the coreference cluster c. However, with pseudo-Euclidean distance,

DistPE (S,D) = 8.54 and DistPE (S,B) = 10.2, correctly identifying S with D.

I then used the Hungarian Matching algorithm (Kuhn, 1955) to find the optimal pairing of

65

NeuralCoref referring expressions with MRS quantifier spans, with respect to pseudo-Euclidean

distance.

Figure 3.2a: MRS structure corresponding to "the American Cocker Spaniel is a breed of
dog" before compound resolution. The compound structure corresponding to the compound
noun "American Cocker Spaniel" is highlighted with a red box. The blue arrows indicate
handle qeq relations, and the black arrows serve as a visual aid to indicate instances of the
same variable.

Figure 3.2b: MRS structure corresponding to "the American Cocker Spaniel is a breed of
dog" after compound resolution.

After aligning the coreference data, I removed compound structures—MRS sub-structures

denoting compound words (see Figure 3.2a)—from the MRS representations and replaced

them with hyphenated concatenations of the predicate labels of their constituent parts (see

Figure 3.2b).

66

3.2.3 From MRS to Pseudo-MRS

In order to obtain logical representations that can serve as distributional contexts, FoLDS

removes all quantifiers and other logical operators from the MRS formulas, while preserving as

much information from these operators as possible. To accomplish this, it was first necessary

to convert MRS structures to pseudo-MRS (PMRS), a representation that is more similar

to FOL. The primary motivation for the conversion to PMRS is the fact that scope is left

underspecified in MRS: without first determining their scopal ordering, it is not feasible to

remove quantifiers and other logical operators from the formulas while preserving meaningful

information.

3.2.3.1 MRS Preprocessing

To derive PMRS structures from MRS, I first removed event-variable arguments from the

EPs and discourse-related EPs (e.g. parg_d) from the MRS structures. I then removed

copular EPs: for example, a sentence such as “John is a student” corresponds to the

FOL formula student(john), but its MRS representation is along the lines of proper_q(x) ∧

named(x, "john")∧be_v_id(x, y)∧a_q(y)∧student(y). To remove the copular be_v_id(x, y)

EP from the MRS structure, I replaced all instances of y with x and removed the quantifier

binding y (along with be_v_id(x, y)) from the formula.

Figure 3.3a: MRS structure corresponding to "the American Cocker Spaniel is a breed of
dog" before copula resolution (duplicated from Figure 3.2b). The blue arrows indicate handle
qeq relations, and the black arrows serve as a visual aid to indicate instances of the same
variable.

67

Figure 3.3b: MRS structure corresponding to "the American Cocker Spaniel is a breed of
dog" after copula resolution.

I additionally treated certain EPs with a copular function, such as breed_of, kind_of,

type_of, species_of, etc. as instances of be_v_id, and removed them in an identical fashion

(see Figure 3.3). For example, if there is a sentence such as “the Cocker Spaniel is a breed of

dog”, then—ignoring quantification—the corresponding MRS structure is roughly expressed as:

cocker-spaniel(x1)∧ be_v_id(x1, x2)∧ breed_of (x2, x3)∧dog(x3). Without treating breed_of

as an instance of be_v_id, FoLDS would instantiate an entity en such that dog(en) and

breed_of (x, en) holds for all x such that cocker-spaniel(x) (see Section 3.2.4). Given another

sentence such as “the Golden Retriever is a breed of dog”, the same procedure will apply

with another entity em ̸= en such that dog(em) and breed_of (x, em) holds for all x such that

golden-retriever(x). In this scenario, the fact that Golden Retrievers and Cocker Spaniels

are both breeds of dog does not lead to meaningful overlap between the two predicates: there

is no entity instantiated that is both a dog and a Golden Retriever (or a dog and a Cocker

Spaniel). By treating breed_of as an instance of be_v_id, FoLDS does admittedly lose

semantic data encoded in the MRS structure, but all Cocker Spaniels and Golden Retrievers

x will directly receive the property dog(x), leading to more meaningful overlap of properties

between these predicates.

I then removed conjunction and disjunction from the MRS structures, by simply duplicating

each MRS formula ϕ containing an and_c or or_c EP, and instantiating two new formulas

ϕL and ϕR: copies of ϕ with the left- and right-hand conjuncts removed, respectively. For

example, let MRS(S) denote the MRS representation of an English sentence S, and let

ϕ = MRS ("everyone likes cats and dogs"). Then ϕL = MRS ("everyone likes dogs") and

ϕR = MRS ("everyone likes cats"). This process continued recursively until all and_c and

68

or_c EPs were removed from each MRS structure.

Although FoLDS does ignore (i.e. lose) semantic data by treating and_c and or_c in

the same manner, it is not apparent that a more effective approach is possible within the

limitations of this model. There are two obvious alternatives to the treatment of logical

disjunction laid out above: first, given a proposition ϕ(x) ∨ ψ(x), we could randomly select

one of the two conjuncts to assign to x (ϕ or ψ)—this approach would still result in a loss of

semantic data, due the deletion of one of the disjuncts. We could also weigh each disjunct

with a weight of 1/2—i.e. treat ϕ(x) ∨ ψ(x) as half of an occurrence of ϕ(x) and half of an

occurrence of ψ(x). Arguably, there is not much of a difference between this method and that

laid out above (i.e. treating and_c and or_c in the same manner), and it is difficult to draw

parallels between this method and intuitive notions about the natural-language semantics of

the word “or”.

3.2.3.2 Pseudo-MRS (PMRS)

In order to convert MRS structures into the more FOL-like PMRS structures, I sorted all

quantifier EPs into one of three categories: universal (∀; e.g. all_q, every_q), existential (∃;

e.g. some_q, a_q), and coreferential (Π). All MRS quantifiers that are not the main instance

of a coreference cluster are mapped to Π. For example, take the span of text in Example

4, where the subscript c indicates that all menc and theyc belong to the same coreference

cluster c.

Example 4.

All menc are mortal. For this reason, theyc are unhappy.

In Example 4, all menc is the main referent and theyc is an instance of c. The sentence

“all menc are mortal ” is mapped to a PMRS structure resembling ∀cx[man(x)→ mortal(x)],

which carries the same interpretation as the PMRS structure ∀x[man(x)→ mortal(x)], but

contains additional information indicating that the restriction of the quantifier (in this case,

man(x)) corresponds to the span of text identified by NeuralCoref as the main referent of

69

the coreference cluster c. The clause “theyc are unhappy” is mapped to a PMRS structure

resembling Πcy[unhappy(y)]: when the anaphora is resolved (see Step 5 of Section 3.2.4),

Πcy[unhappy(y)] will be converted to ∀x[man(x)→ unhappy(x)].

Each PMRS structure ϕ consists of a list ϕQ of quantifiers, a list ϕP of (implicitly conjoined)

predicates, and a weight ϕW ∈ (0, 1] that encodes the degree of evidence towards the validity

of ϕ: in most cases, ϕW will be equal to one—ϕW is only less than one in the case that ϕ

arose from a ∀-type PMRS structure ψ (see Step 4 of Section 3.2.4). Each quantifier contains

indices denoting its coreference cluster, bound variable, and the list of predicates constituting

its restriction. The ordering of ϕQ determines the scopal relations between the quantifiers in

the PMRS structure: a quantifier q outscopes a quantifier q′ if and only if q precedes q′ in

the list ϕQ (see Figure 3.4b).

Figure 3.4a: MRS structure corresponding to "every student reads a book". The symbols in
parentheses above the MRS quantifiers (every_q and a_q) indicate the PMRS quantifier
categories that they will be sorted into.

Figure 3.4b: PMRS structure corresponding to the ∀ > ∃ interpretation of "every student
reads a book". The red arrows indicate quantifier restriction, and the blue arrows nuclear
scope. Note that the restriction of each quantifier corresponds to its restriction handle in the
MRS structure (see Figure 3.4a), and its nuclear scope consists of all predicates not in its
restriction that contain an instance of its bound variable.

Each predicate consists of a list of arguments, a label (the name of the predicate, e.g.

dog_n_1, run_v_1, see_v_1, etc.), and a boolean polarity value that indicates whether the

70

predicate is negated. I placed the PMRS structures into negation normal form (Darwiche,

2001): negation operators were recursively percolated downward until they scoped over

individual predicates, using the rules of logical replacement in Equation 3.5 below.

¬∀x[P] = ∃x[¬P] (3.5a)

¬∃x[P] = ∀x[¬P] (3.5b)

In the following section (3.2.4), I often denote PMRS structures using their rough FOL

equivalents for the sake of expositional simplicity. In those cases, I indicate this notational

abuse with the “≈” symbol: for example, (PMRS) ϕ ≈ ∀x[student(x) → ∃y[book(y) ∧

read(x, y)]] to denote the PMRS structure in Figure 3.4b.

3.2.4 From Pseudo-MRS to a Fuzzy-Logical Model World

I then sorted each PMRS structure ϕ into one of four categories: ∃-type, in which the

highest-scoping quantifier ϕQ[0] is existential; ∀-type, in which ϕQ[0] is universal; Π-type, in

which ϕQ[0] is coreferential; and non-quantified, in which the quantifier list ϕQ is empty. I

initialized the weight ϕW all of PMRS structures ϕ to 1.0, and used the following procedure

(Steps 1-6 below) to remove all logical operators from the PMRS structures and obtain a list

of (p, c(p)+, c(p)−) triples, where p is an atomic proposition (a predicate and its arguments),

c(p)+ is the number of times that p occurs in the data (the positive count), and c(p)− the

number of times that ¬p occurs in the data (the negative count).

Step 1. The integer-valued count d = 0, which is used to index variables inserted by

existential quantifiers (see Step 3), and the coreference store—a list of pairs (c, x), where c is

the index of a coreference cluster, and x is either an entity or a PMRS structure (see Step

5)—are intialized. For each named entity e belonging to a coreference cluster c, the pair (c, e)

71

is added to the coreference store—no other pairs are added to the coreference store at this

point.

Now take, for example, the following pair of ∀-type PMRS structures: ϕ ≈ ∀x[man(x)→

mortal(x)] and ψ ≈ ∀y[mortal(y) → ¬happy(y)]. If ψ were to be processed before ϕ, then

every entity e such that man(e) is true would not receive the property ¬happy(e), because e

has not yet received the property mortal(e): structure ϕ must be processed before structure

ψ, so that each entity e such that man(e) is true receives the property mortal(e), and can

then receive the property ¬happy(e).

For this reason, the ∀-type PMRS structures are inserted into a partial order, such that

∀x[P (x) → R(x)] ≤ ∀y[R(y) → Q(y)]—i.e. given two ∀-type PMRS structures ϕ and ψ,

ϕ ≤ ψ if and only if the scope of ϕQ[0] is equal6 to the restriction of ψQ[0]. The terminal

nodes—∀-type PMRS structures ϕ such that there does not exist a ∀-type PMRS ψ with

ϕ ≤ ψ—will be processed first in the remainder (Steps 2-6) of this procedure.

Step 2. For each non-quantified PMRS ϕ, the procedure iterates over each predicate p in

ϕP , and updates the triple (p, c(p)+, c(p)−) in the atomic proposition list as in Equation 3.6.

(p, c(p)+, c(p)−)←


(p, c(p)+ + ϕW , c(p)−) if polarity(p) = ⊤

(p, c(p)+, c(p)− + ϕW) otherwise
(3.6)

This is to say that the weight ϕW (degree of attestation; see Step 4) of the PMRS ϕ is

added to the negative count if p is negated, and ϕW is added to the positive count if p is not

negated.

For example, let ϕP = [¬see(john,mary)] and ϕW = 1, and suppose that the tuple

(see(john,mary), 1, 0) is already in the atomic proposition list. Then following Step 2,

(see(john,mary), 1, 0) ← (see(john,mary), 1, 1): the existing positive count remains un-

changed, and ϕW is added to the negative count.
6Although strict equality may be an excessively rigid requirement from a theoretical perspective, it was

necessary for reasons of computational feasibility.

72

Step 3. For each ∃-type PMRS ϕ, the bound variable of ϕQ[0] is replaced with the dummy

entity ed, and d← d+ 1. If ϕQ[0] belongs to a coreference cluster c, then the pair (c, ed) is

added to the coreference store, ϕQ[0] is removed from ϕQ, and ϕQ is re-sorted into the ∃-type,

∀-type, Π-type, or non-quantified categories, as determined by the type of the new ϕQ[0].

For example, let ϕ ≈ ∃x∀y[love(x, y)]. Then following Step 3, ϕ ← ∀y[love(ed, y)],

d ← d + 1, and ϕ is recategorized as a ∀-type PMRS, as ∀ is now the highest-scoping

quantifier.

As another example, let ϕ ≈ ∃x∃y[love(x, y)]. Following Step 3, ϕ← ∃y[love(ed, y)] and

d← d+ 1. After another application of Step 3, ϕ← love(ed, ed+1) and ϕ is recategorized as

a non-quantified PMRS.

Step 4. For each terminal node, ∀-type PMRS ϕ, the procedure first iterates over every

entity e in the domain and evaluates the truth value w = [[rstr(ϕQ[0])(e)]] (Equation 3.7) of

rstr(ϕQ[0])(e), where rstr(ϕQ[0])(e) denotes the restriction of the quantifier ϕQ[0] with the

bound variable of ϕQ[0] replaced by e—i.e. rstr(ϕQ[0])(e) = rstr(ϕQ[0])[bvar(ϕQ[0])⇒ e].

[[ϕ]] =



min
e

[[ϕ[bvar(ϕQ[0]⇒ e)]]] if ϕ is ∀-type

max
e

[[ϕ[bvar(ϕQ[0]⇒ e)]]] if ϕ is ∃-type

min
e∈ϕP

[[p]] if ϕ is non-quantified
1− [[ϕ]] if ϕ is negated

c(ϕ)+/(c(ϕ)+ + c(ϕ)−) otherwise
if ϕ is atomic formula

(3.7)

As shown in Equation 3.7, the truth value of any PMRS ψ is calculated via a recursive

procedure. If ψ is a ∀-type PMRS such as ψ ≈ ∀x[dog(x) → ∃y[tail(y) ∧ have(x, y)]], we

iterate over all entities e in the domain and calculate 1 −min([[dog(e)]], 1 − [[∃y[tail(y) ∧

have(e, y)]]]): in many treatments of fuzzy logic, ¬P is defined as 1 − P , and P ∧ R is

defined as min(P,R) (Zadeh, 1965), and so 1 − min(P, 1 − R) = ¬(P ∧ ¬R) = P → R,

73

therefore 1−min([[dog(e)]], 1− [[∃y[tail(y) ∧ have(e, y)]]]) is the fuzzy-logical equivalent of

dog(e)→ ∃y[tail(y) ∧ have(e, y)].

Under a finite domain, ∀x[P (x)] is equivalent to the conjunction
∧
x

P (x) over all entities

x in the domain (Barklund, 1994). As such, I defined the truth value of ψ ≈ ∀x[dog(x)→

∃y[tail(y) ∧ have(x, y)]] as min
e
{1−min([[dog(e)]], 1− [[∃y[tail(y) ∧ have(e, y)]]]}: the fuzzy-

logical equivalent of
∧
e

dog(e)→ ∃y[tail(y) ∧ have(e, y)]).

On the other hand, for each ∃-type PMRS such as ψ ≈ ∃x[dog(x) ∧ run(x)], we iterate

over all entities e in the domain and calculate the fuzzy-logical equivalent of dog(e) ∧

run(e): min([[dog(e)]], [[run(e)]]). Under a finite domain, ∃x[P (x)] is equivalent to the

disjunction
∨
x

P (x) over all entities x in the domain (Barklund, 1994). As P ∨R is defined

as max (P,R) in many treatments of fuzzy logic (Zadeh, 1965), I defined the truth value of

ψ ≈ ∃x[dog(x) ∧ run(x)] to be max
e
{min([[dog(e)]], [[run(e)]])}: the fuzzy-logical equivalent

of
∨
e

dog(e) ∧ run(e).

Each non-quantified PMRS ψ consists of a list of implicitly-conjoined atomic propositions:

for example, ψ ≈ happy(john) ∧ sleep(john). In this case, I defined the truth value [[ψ]]

to be min{[[happy(john)]], [[sleep(john)]]}: the fuzzy logical equivalent of happy(john) ∧

sleep(john). For each of the atomic formulas such as happy(john), we compute the truth

value [[happy(john)]] by first retrieving the corresponding triple (happy(john), p, n) from the

atomic proposition list. Then [[happy(john)]] = p/(p+ n): the positive occurrence count of

happy(john) divided by the total occurrence count of happy(john). This step terminates the

recursion in Equation 3.7.

Now, returning to the discussion of Step 4, recall that for each terminal node ∀-type

PMRS ϕ, we begin by iterating over each entity e and evaluating the truth value w =

[[rstr(ϕQ[0])(e)]] of rstr(ϕQ[0])(e). For example, let ϕ ≈ ∀x[person(x) → mortal(x)] be a

terminal ∀-type node with ϕW = 1, and suppose that the triples (person(socrates), 1, 0),

(person(plato), 1, 1), and (person(clifford), 0, 1) are already in the atomic proposition list,

and that there are no other propositions involving the predicate person in the list. Then

74

rstr(ϕQ[0])(e) = person(e), so we have: [[rstr(ϕQ[0])(socrates)]] = 1.0, [[rstr(ϕQ[0])(plato)]] =

0.5, and [[rstr(ϕQ[0])(clifford)]] = 0.0.

For all entities e such that [[rstr(ϕQ[0])(e)]] ̸= 0.0, a new PMRS ϕ(e) is generated,

consisting of the scope of ϕQ[0] with all instances of the bound variable of ϕQ[0] replaced

by e. The weight ϕ(e)W is then set to [[rstr(ϕQ[0])(e)]], and ϕ(e) is sorted into the ∃-type,

∀-type, Π-type, or non-quantified categories according to the (type of the) new ϕ(e)Q[0]. If

ϕQ[0] belongs to a coreference cluster c and is not a Π-type, the pair (c, rstr(ϕQ[0])) is added

to the coreference store. If there are no entities e that satisfy the restriction of ϕ (i.e. such

that [[rstr(ϕQ[0])(e)]] ̸= 0), we ensure co-occurrence between the restriction and scope of ϕ

by converting the universal quantifier ϕQ[0] to an existential quantifier and re-sorting ϕ into

the ∃-type category (see Step 3).

In our example above, ϕ(socrates) = mortal(socrates) with ϕ(socrates)W = 1.0, and

ϕ(plato) = mortal(plato) with ϕ(plato)W = 0.5. As [[person(clifford)]] = 0, no corresponding

PMRS ϕ(clifford) is generated.

The idea here is that we have some evidence that Plato is a person, but an equal amount

of evidence that he is not. As such, the assertion that Plato is mortal (mortal(plato)) should

receive less weight than the assertion that Socrates is mortal: we only have evidence that

Socrates is a person, and none that he is not. After ϕ(plato) passes through Step 2, then

[[mortal(plato)]] = 0.5/0.5 = 1: there is no evidence against Plato being mortal, and so

the truth value is still 1. However, if another PMRS ψ ≈ ¬mortal(plato), with ψW = 1,

is encountered, then [[mortal(plato)]] = 0.5/(1 + 0.5) = 1/3: the evidence for Plato being

mortal came from a less certain inference (a universal statement whose restriction we are

only half certain applies to Plato) than the evidence against Plato being mortal, and so

we are more certain that he is not mortal. On the other hand, if ϕ(plato)W were to equal

1 in the above example, and ψ ≈ ¬mortal(plato) with ψW = 1, were encountered, then

[[mortal(plato)]] = 1/(1 + 1) = 1/2: the evidence for Plato being mortal is equally certain as

the evidence against Plato being mortal.

75

As another example, suppose again that ϕ ≈ ∀x[person(x) → mortal(x)], but that no

propositions involving the predicate person are in the atomic proposition list. Then, as

discussed above, ϕ← ∃x[person(x) ∧mortal(x)] and ϕ is recategorized as an ∃-type PMRS,

in order to ensure co-occurrence between person(x) and mortal(x).

At the end of Step 4, each terminal node is removed from the ∀-type partial order, and

the new set of terminal structures is identified.

Step 5. For each Π-type PMRS ϕ belonging to a coreference cluster c, the procedure

searches through the coreference store to find the corresponding (c, x) pair. If x is an entity,

the bound variable of ϕQ[0] is replaced with x, ϕQ[0] is removed from ϕQ, and ϕ is re-sorted

into the ∃-type, ∀-type, Π-type, or non-quantified categories according to the type of the

new ϕQ[0]. If x is a PMRS structure—i.e. x is the restriction of a ∀-type PMRS (see Step

4)—then a new PMRS ϕ′ is instantiated by replacing the free variable of x with the bound

variable of ϕQ[0], and converting ϕQ[0] to a universal quantifier with restriction x and nuclear

scope ϕ. The new PMRS ϕ′ is then inserted into the ∀-type partial order.

If there is no such (c, x) pair in the coreference store, ϕ is returned to the Π-type category

to wait for the next pass through steps 2-6.

For example, suppose that ϕ ≈ Πcx[run(x)], and (c,mary) is in the coreference store.

Then after applying Step 5, ϕ ← run(mary) and ϕ is recategorized as a non-quantified

PMRS. On the other hand, suppose again that ϕ ≈ Πcx[run(x)], but that (c, alligator(–))

is in the coreference store (there cannot be more than one referent paired with a given

cluster c). This occurs only when there is a PMRS ψ ≈ ∀cy[alligator(y)→ P (y)], and ψQ[0]

(i.e. the universal quantifier binding y) is the main instance of the cluster c. In this case,

ϕ← ∀x[alligator(x)→ run(x)] and ϕ is recategorized as a ∀-type PMRS. This is intended to

reflect instances of anaphora along the lines of “all alligatorsi are . . . theyi run frequently.”

Step 6. If the ∃-type, ∀-type, Π-type, and non-quantified categories are all empty, the

procedure is terminated, returning the set of (p, c(p)+, c(p)−) atomic proposition, positive

76

count, negative count triples. Otherwise, we return to Step 2.

Following the procedure outlined in Steps 1-6 above, the set of triples (p, c(p)+, c(p)−) in

the atomic proposition list is then broken down further into a set of distributional contexts,

generating the set of nearly all possible combinations of λ-abstracted arguments and predicates

for each atomic proposition p (see Figure 3.5). This atomic decomposition procedure is partially

intended to mitigate the sparsity inherent in the formal-logical distributional data generated

by the procedure laid out in Steps 1-6 above. For example, suppose that we have the following

two sentences: “the man saw the house” and “the dog saw the squirrel ”. FoLDS will generate

multiple logical formulas from these two sentences, but there are two which are relevant to this

example: see(eman , ehouse) and see(edog , esquirrel). Without atomic decomposition, eman and

edog would only appear in the contexts λx.see(x, ehouse) and λx.see(x, esquirrel), respectively,

meaning that eman and edog would gain no overlap in properties from this pair of sentences.

However, using the atomic decomposition procedure, eman and edog both appear in the

context λxλy.see(x, y), where the outermost λ-abstraction operator indicates the argument

position in which a term occurs within the context7. This leads to an increase in similarity

between the predicates man and dog due to the fact that they are both capable of sight.

Figure 3.5: An example of the conversion of atomic propositions into distributional contexts.
Note that each atomic proposition is broken down into nearly all possible combinations of
λ-abstracted predicates and arguments—the only exception being those combinations in
which all arguments and predicates have been λ-abstracted.

In Figure 3.5, the 4-tuple (λx.like(x,mary), john, 1, 0) encodes the fact that there is one
7This is to say that, for example, edog occurring in the context λxλy.see(x, y) indicates that there is an

instance of see(edog , z) (for some entity z) in the data.

77

positive occurrence—and zero negative occurrences—of john liking mary. Similarly, the

4-tuple (λxλP.P (x,mary), john, 1, 0) encodes the fact that there is one positive occurrence

of john doing something to mary, (λxλy.like(x, y), john, 1, 0) encodes the fact that there is

one positive occurrence of john liking something, and so on. On the other hand, the tuple

(λx.sleep(x), john, 0, 1) encodes the fact that there is one negative occurrence—and zero

positive occurrences—of john sleeping: i.e. one count of him not sleeping.

3.2.5 Similarity Metric

The 4-tuples generated by the process laid out in Section 3.2.4 are then used to construct

complex-valued count vectors for each entity and predicate in the domain: contexts—λ-

abstracted formulas—index the dimensions, whose values are complex numbers of the form

a+ bi, where a is the positive count and b the negative count. For example, in the atomic

decomposition demonstrated in Figure 3.5, the entity john is mapped to a 13-dimensional

complex-valued vector: the embedding dimension is equal to the number of contexts (i.e.

the number of 4-tuples in the right-hand side of the figure). Each coordinate is indexed

by a context—the first element of the 4-tuples in Figure 3.5—so that, for example, the

λx.like(x,mary)th coordinate of the vector john (johnλx.like(x,mary)) has a value of 1 + 0i.

Similarly, johnλxλy.like(x,y) = 1+0i, johnλxλP.P (x,mary) = 1+0i, and johnλx.sleep(x) = 0+1i—for

all of the remaining nine contexts ϕ in Figure 3.5, johnϕ = 0 + 0i.

FoLDS calculates the similarity between any two such entity vectors using the formula

defined in Equation 3.8 below.

sim(x, y) = τ(x, y) · Ω(x, y) (3.8)

The term τ(x, y) is a length-one complex number that lies in the positive quadrant of

the complex plane—in other words, τ(x, y) lies between 1 + 0i and 0 + 1i (inclusive). This

complex number is a measure of the synonymy/antonymy between x and y: given two entities

78

x, y that are completely synonymous, the value of τ(x, y) will be 1 + 0i. Conversely, if x and

y are completely antonymous, the value of τ(x, y) will be 0 + 1i. Values lying between these

two extrema reflect graded degrees of synonymy/antonymy.

In the context of this discussion, I define synonymy/antonymy to be a function of the

differences between the truth values of x and y with respect to the contexts ϕ in which

they both appear—i.e. those contexts ϕ such that xϕ ̸= 0 + 0i and yϕ ̸= 0 + 0i, where xϕ

denotes the ϕth coordinate of the vector x. Equation 3.9 defines the fuzzy truth value of xϕ,

r(xϕ) ∈ [0, 1]: a real number that reflects the degree to which ϕ(x) holds in the fuzzy-logical

model defined in Section 3.2.4.

r(a+ bi) =
a

a+ b
(3.9)

Given a context ϕ and an entity x, the ϕth coordinate of x, xϕ = a + bi, is a complex

number, where a represents the positive occurrence count of ϕ(x), and b represents the

negative count. The truth value r(xϕ) is then simply the positive occurrence count of ϕ(x)

divided by the total occurrence count of ϕ(x).

Returning to the discussion of the term τ(x, y) of Equation 3.8, any two entities x and

y are considered synonymous if for each context ϕ, the truth value of xϕ equals the truth

value of yϕ, or r(xϕ) = 1. On the other hand, x and y are considered antonymous if, for each

context ϕ, r(xϕ) = 1− r(yϕ). This is designed to model logical implication in a fuzzy setting:

in classical logic, ϕ(y)→ ϕ(x) holds if ϕ(y) = ϕ(x) or ϕ(x) = ⊤, and does not hold only if

ϕ(y) = ⊤ and ϕ(x) = ⊥. This is modeled by the formula σ(ϕ, x, y) in Equation 3.10, which

reflects the fuzzy degree to which ϕ(y)→ ϕ(x) holds with respect to some context ϕ.

σ(ϕ, x, y) = max(r(xϕ), 1− |r(xϕ)− r(yϕ)|) (3.10)

Note that σ(ϕ, x, y) = 1 if r(xϕ) = r(yϕ) or r(xϕ) = 1. In Equation 3.8, the term τ(x, y) =

τ ′(x, y)/|τ ′(x, y)| is simply the length-one normalization of τ ′(x, y): the term τ ′(x, y) defined

79

in Equation 3.11 represents the the raw aggregation of the degree of synonymy/antonymy of

x and y with respect to each context ϕ.

τ ′(x, y) =
∑
ϕ

(σ(ϕ, x, y) · ι(ϕ)) + (1− σ(ϕ, x, y))i (3.11)

In words: τ ′(x, y) is calculated by summing over all contexts ϕ, first computing the value

of σ(ϕ, x, y). The real part of τ ′(x, y) is simply the sum of the values of σ(ϕ, x, y) for each

context ϕ (i.e. the fuzzy degree to which ϕ(y)→ ϕ(x) holds), while the imaginary part is the

sum of 1− σ(ϕ, x, y)—the fuzzy degree to which ¬(ϕ(y)→ ϕ(x)) holds.

Note that the real part of τ ′(x, y) is scaled by the positive real number ι(ϕ). Unfortunately,

there is no theoretical motivation for this scalar factor: I simply found empirically that it

yields better results on inferencing tasks. For that reason, I postpone any further discussion

of ι(ϕ) to a later part of this section (see Equation 3.13).

Returning to Equation 3.8, the length-one complex number τ(x, y) is scaled by the real

scalar Ω(x, y) ∈ [0, 1], as defined in Equation 3.12. The term Ω(x, y) is an asymmetric

measure of the overlap between the contexts in which x and y appear, and is designed to

measure the fuzzy degree to which x is a hyponym of y. For example, Ω(apple, fruit) should

be close to 1, but Ω(fruit , apple) should be closer to 0—every property of fruit is also a

property of apple, but not vice versa.

Ω(x, y) =

∑
ϕmin(|xϕ|, |yϕ|) · ι(ϕ)∑

ϕ |xϕ| · ι(ϕ)
(3.12)

The scalar Ω(x, y) is a function of the ratio of the magnitudes |xϕ| and |yϕ| of xϕ and yϕ

(respectively), for each context ϕ. The magnitude of a complex number is simply its length:

as the magnitude of xϕ increases, so does the degree of attestation of ϕ(x)—i.e. ϕ(x) occurs

more often in the data. If |xϕ| = 0, then neither ϕ(x) nor ¬ϕ(x) occurs in the data. As such,

if |xϕ| ≤ |yϕ| for each context ϕ, then it is very likely that x is a hyponym of y (modulo

negation).

80

To view this conceptually, let E(x) = {ϕ | xϕ ̸= 0 + 0i} be the set of all contexts ϕ

whose value for x is nonzero (i.e. known), and assume that the magnitude of each nonzero

coordinate of x and y is equal to 1. Then as |E(x) ∩ E(y)| → 0, Ω(x, y) → 0, and as

|E(x) ∩ E(y)| → |E(x)|, Ω(x, y)→ 1. The idea is that the closer that E(x) is to a subset of

E(y), the more confident we can be that properties of y apply to x (again, modulo negation),

and the further E(x) is from a subset of E(y), the less confident we are that properties of y

apply to x.

Note that for each context ϕ, if |xϕ| ≤ |yϕ|, then |xϕ| = min(|xϕ|, |yϕ|), and therefore

min(|xϕ|, |yϕ|) / |xϕ| = 1. If |xϕ| > |yϕ|, then we have |xϕ| > min(|xϕ|, |yϕ|), and there-

fore min(|xϕ|, |yϕ|) / |xϕ| < 1. In words: if y occurs in the context ϕ more often than x,

then min(|xϕ|, |yϕ|) / |xϕ| = 1, and if x occurs more often than y in the context ϕ, then

min(|xϕ|, |yϕ|) / |xϕ| < 1.

Each summand min(|xϕ|, |yϕ|) and |xϕ| in the numerator and denominator (respectively)

is scaled by ι(ϕ), which is defined in Equation 3.13.

ι(ϕ) = log2

µmax

µ(ϕ)
(3.13a)

µ(ϕ) =
∑
x

|xϕ| (3.13b)

µmax = max
ϕ

µ(ϕ) (3.13c)

The value of ι(ϕ) is intended to mimic inverse document frequency (Sparck Jones, 1972)

weighting, where the notion of document frequency has been replaced with the sum of the

magnitudes of each coordinate of the context vector ϕ (Equation 3.13b). The value of ι(ϕ)

decreases as the frequency with which the context ϕ appears increases. The weights ι(ϕ)

ensure that less frequent contexts are more important to the value of Ω(x, y): if x and y both

have known values for a very frequent context—i.e. a context/property that many entities

have—that alone does not lend very much evidence to the transferability of properties from

81

y to x.

3.3 Experiment: Property Inference

In order to evaluate the viability of the FoLDS model and the effectiveness of its logical-form-

derived embeddings, I evaluated FoLDS on a property inference task (described in Section

3.3.1), and compared its performance to that of the models evaluated in Rosenfeld and Erk

(2022) (Section 3.3.2). I describe the methods that I employed to leverage the two-dimensional

FoDLS similarity metric for property inference in Section 3.3.3, and report the results of this

experiment in Section 3.3.4.

3.3.1 Task Description

Property inference refers to language users’ ability to infer properties of the denotations

of words purely from their linguistic distributions. For example, given the passage “many

well-read adults know that Buddha sat long under a banyan tree [...] and Tahitian natives

lived idyllically on breadfruit and poi” (Levy and Nelson, 1994), observing the terms banyan

tree, breadfruit, and poi in this single linguistic context suffices to infer some of their prop-

erties—even if these words are entirely unfamiliar to the reader: a banyan tree must be

somewhat large (as Buddha was able to sit under one), and breadfruit and poi must be foods.

Language users are able to make such inferences without having any knowledge grounding

these terms to real-world concepts.

Property inference is a logic-oriented task (Patalano, Wengrovitz, and Sharpes, 2009):

given that an aardwolf is a type of animal, we assume that aardwolves have all of the

properties that animals have: alive, breathes, etc. Here, we are reasoning from hyponymy

(Herbelot and Vecchi, 2015): this is comparable to knowledge-representation frameworks such

as KL-ONE (Brachman and Schmolze, 1989), in which subclasses (∼hyponyms) inherit values

(∼properties) from their parent superclasses (∼hypernyms). However, property-inferential

82

Feature Value
a-utensil 0.634 (19/30)
found-in-kitchens 0.600 (18/30)
used-with-forks 0.534 (16/30)
a-cutlery 0.500 (15/30)
is-dangerous 0.467 (14/30)
a-weapon 0.367 (11/30)

Table 3.1: McRae et al. (2005) feature norms for the concept knife. For all other features Q,
F (knife)Q = 0.

reasoning arguably goes beyond hyponymy: for example, given that alligators have the

property is-dangerous, we assume that rabbits do not have that property—here, we are

reasoning from antonymy. Property inference tasks therefore provide an ideal proving ground

to evaluate the performance of a logic-oriented distributional model such as FoLDS.

As an NLP benchmark, property inference is typically performed over a feature norm

database, such as the Vinson and Vigliocco (2002) and McRae et al. (2005) databases. As

discussed in Section 3.1.3, a feature norm database consists of a set of concepts (words) and

a set of features, in which each concept w is assigned a feature vector F (w) ∈ Rn, where n is

the number of features in the database: the value of F (w)Q is the value of the feature Q for

the word w (see Table 3.1).

The McRae et al. (2005) database, which I used to evaluate FoLDS, consists of 541

concepts and 2,526 features: feature values are obtained from experiment participants’

judgments. Rosenfeld and Erk (2022) create ten random folds consisting of 50 concepts

each from the dataset. On each fold, the concepts within the fold represent the set U of

unknown words—words which have been observed in text but are not grounded to real-world

concepts—and the concepts outside of the fold represent the set K of known words. For each

unknown word u ∈ U , the feature vector F (u) is withheld: the task is to reconstruct F (u)

given the features of the known words in K and the similarity between u and each word in K.

83

3.3.2 Previous Work

In their analysis, Rosenfeld and Erk (2022) evaluated a wide variety of property inference

methods. Note that all of the property inference methods evaluated by those authors share

the same distributional word embeddings: LSA vectors drawn with a context window of two

from four different corpora, comprising a total of ∼10.3 billion words: ukWaC (Ferraresi et al.,

2008), Google Gigaword (Graff and Cieri, 2003), English Wikipedia8, and the BNC (BNC,

2007). What varies across methods is how they use these embeddings to estimate properties.

A variant of Modified Adsorption (ModAds; Talukdar and Crammer, 2009)—a label-

propagation algorithm—achieved SoTA results in Rosenfeld and Erk’s (2022) analysis. I refer

interested readers to Talukdar and Crammer (2009) and Rosenfeld and Erk (2022) for an

in-depth explanation of ModAds and its application to property inference tasks.

Many of the property inference methods that Rosenfeld and Erk (2022) evaluated include

a shifted variant. This does not indicate a difference in the models’ architectures, but rather

the feature vectors F (w). In the shifted trials, Rosenfeld and Erk (2022) decrease the values

of those properties Q such that F (w)Q = 0 to negative values, in order to increase the

separation between irrelevant and relevant properties.

3.3.3 Experiment

For this experiment, I used Simple English Wikipedia9 (SEW) to generate FoLDS embeddings.

There were two primary motivations for this choice of dataset: first, SEW is intended for

second-language learners of English and people with learning disabilities. As such, the

sentences in SEW are simpler, shorter, and use less complex grammatical constructions

than those in the standard English Wikipedia, which facilitates the use of the ERG rule-

based parser. Second, SEW is significantly smaller than English Wikipedia—24.5 million

vs. 4.2 billion words, respectively—making the natural-language-to-logic translation process
8https://en.wikipedia.org/
9https://simple.wikipedia.org/

84

https://en.wikipedia.org/
https://simple.wikipedia.org/

described in Section 3.2 more computationally feasible.

Recall that the procedure described in Section 3.2 only yields vectors for each entity, not

each word. For each of the concept words w in the McRae et al. (2005) database, I obtained

an embedding by summing together the entity vectors for each entity in {e | ∃z ∈ R+[ew =

z + 0i]}—the set of all entities that have a nonzero positive count, and a zero negative count,

for the context λx.w(x).

In order to interface with the FoLDS similarity metric (Equation 3.8) in a meaningful way,

it was necessary to convert the real-valued feature vectors F (w) of the McRae et al. (2005)

database into complex-valued vectors C(F (w)). For each term (word) w and property Q in

the dataset, I set C(F (w))Q to 0 + 1i (90◦) if F (w)Q = 0. Otherwise, I placed C(F (w))Q

on the positive quadrant of the unit circle with its angle between 0◦ and 45◦, inversely

proportional to the value of F (w)Q—mimicking Rosenfeld and Erk’s (2022) shifting procedure

(see Section 3.3.2)—as defined in Equation 3.14.

C(F (w))Q =


0 + 1i if F (w)Q = 0

β(F (w)Q) otherwise
(3.14a)

β(z) =
(1 + z) + (1− z)i
|(1 + z) + (1− z)i|

(3.14b)

To estimate properties, I replicated the Johns and Jones (2012) method—but with complex,

rather than real, numbers—which estimates property values for unknown words as the sum

of all of the property values of the known words, weighted by their cosine similarity with

the unknown word in question. Letting K denote the set of known words, u denote a given

unknown word, and Q denote a given property, the Johns and Jones (2012) method calculates

the estimated value of Q for u, P (u)Q, as in Equation 3.15.

P (u)Q =
∑
w∈K

F (w)Q · cos(u,w)λ (3.15)

85

Where λ is a hyperparameter—higher values of λ reduce the influence of less similar

words.

In this experiment, I found empirically that only considering the set Kn(u) of the top n

most related known words w to a given unknown word u—as determined by the magnitude

Ω(u,w)—yielded the best performance for the FoLDS model. Via grid search, I found n = 25

to be the optimal value for this task. For a given unknown word u and property Q, the

estimated complex value of Q for u, P (u)Q, is calculated as in Equation 3.16.

P (u)Q =
∑

w∈Kn(u)

abs(C(F (w))Q · sim(u,w)) (3.16)

Where abs(a + bi) = |a| + |b|i. This function forces the resulting value of C(F (w))Q ·

sim(u,w) to the positive quadrant of the complex plane while preserving its distance from

the real axis.

Recall that sim(u,w) (Equation 3.8) is the product of the length-one complex num-

ber τ(u,w) (Equation 3.11) and the real scalar Ω(u,w) (Equation 3.12), which reflect

synonymy/antonymy and relatedness, respectively. If u and w are synonymous, then

τ(u,w) = 1 + 0i. Given some property of w—represented by a positive-quadrant com-

plex number a+ bi—whose value is unknown for u, (a+ bi) · τ(u,w) = a+ bi: synonymous

words are predicted to have the same values for each property. On the other hand, suppose

that u and w are antonymous, so that τ(u,w) = 0 + 1i, which corresponds to a 90◦ rotation:

antonymous words are predicted to have opposite property values. The real number Ω(u,w)

scales τ(u,w): the known words w with higher values of Ω(u,w)—i.e. those which are more

related to u—will contribute more to the overall inference than those with lower values (see

Figure 3.6).

In order to compare the predicted values P (u) to the ground-truth values F (u), each

P (u)Q must be converted to a real number r(P (u))Q. Recall that the values C(F (u))Q are

shifted (Equation 3.14), which I accounted for by placing a floor ξ on the values of r(P (u))Q.

86

Figure 3.6: Equation 3.16 can be viewed as the average of the predicted values of Q for u
for each known word x (in this example, x ∈ {w, v, y, z}), weighted by their overlap Ω(u, x)
(Equation 3.12).

In this experiment, I found via grid search that ξ = 0.15 yielded the best results. This floor

was implemented via the formula in Equation 3.17, where r(–) is as defined in Equation 3.9.

R(P (u))Q =


r(P (u)Q) if r(P (u)Q) ≥ ξ

0 otherwise
(3.17)

As P (u)Q approaches the real axis, R(P (u))Q → 1, and as P (u)Q approaches the imaginary

axis, R(P (u))Q → 0.

Note that, formally, R(P (u))Q is the probability that, for any x such that u(x) holds,

Q(x) holds as well. Under the definition of a language model over logical forms given in

Chapter 1 (Definition 3): R(P (u))Q = p([MASK] = Q | ∀x[u(x)→ [MASK](x)]).

3.3.4 Evaluation and Results

Rosenfeld and Erk (2022) used two separate evaluation metrics in their analysis. The

first, Mean Average Precision (MAP), was originally designed as an evaluation metric for

information retrieval systems (Zhu, 2004). Applied to this task, MAP (which ranges from 0

to 1) measures a given property inference method’s ability to rank relevant features above

irrelevant features. In the McRae et al. (2005) database, relevant features for a given word

u ∈ U are those features Q whose value F (u)Q > 0 (i.e. those with non-zero values). For

example, a system would receive a perfect Average Precision (AP) score—MAP is simply

87

the mean over the AP scores for each unknown word—for the concept knife if the top six

predicted features for that word were a-utensil, found-in-kitchens, used-with-forks, a-cutlery,

is-dangerous, and a-weapon (see Table 3.1). The order (ranking) of these predicted features

does not impact the AP score: any permutation of the above list would still result in a perfect

score, as long as those features remain the top six returned.

Additionally, it does not matter what value is predicted for the ground-truth irrelevant fea-

tures, as long as the ground-truth relevant features are ranked higher than the irrelevant ones.

As an illustration, suppose that is-dangerous, a-utensil, used-with-forks, found-in-kitchens,

a-cutlery, and a-weapon are the top six predicted features for the concept knife, in that order

(refer to Table 3.1). Suppose further that the predicted value P (knife)a-weapona-weapon = 0.81,

so that the predicted values for the other relevant features are all higher than 0.81. In this

case, the system could predict a value P (knife)requires-pilots = 0.805 for some irrelevant feature

such as requires-pilots, and still receive a perfect AP score. Again, all that matters for the

MAP evaluation is that relevant features are ranked above irrelevant features.

For this reason, I argue that MAP is not an ideal metric for evaluating property inference

methods. If the system has a perfect MAP score, that by no means excludes the possibility

that it predicts high values for irrelevant features. One could object that, given a property

inference system that achieves a perfect MAP score, we need only assign non-zero values

to the top k features—for example, k = 6—and zero out the rest, in order to recover the

ground-truth list of properties for each unknown word. However, the number of non-zero

features varies across words in the McRae et al. (2005) database: some words have as few as

six, and some as many as 26. In this hypothetical scenario, any choice of k will inevitably

lead to some words receiving fewer relevant predicted features than the ground-truth, and

some receiving irrelevant predicted features.

Many of the problematic aspects of the MAP evaluation do not pertain to the second

evaluation metric employed in Rosenfeld and Erk’s (2022) analysis, Spearman’s Rank Corre-

lation Coefficient (Spearman ρ; Spearman, 1904). Rosenfeld and Erk (2022) calculate the

88

Spearman ρ for each unknown word against its ground-truth values in the McRae et al. (2005)

database, then average over all Spearman ρ scores for each unknown word in each fold to

yield an overall score for each model.

Under the Spearman ρ evaluation metric, the raw predicted values for each feature are not

necessarily relevant: what is important is the ranking between the predicted features. While

this is arguably a drawback of this metric, it is also a drawback suffered by the MAP score.

However, as mentioned above, many deficiencies of MAP do not pertain to Spearman ρ: for

example, a-utensil,found-in-kitchens, used-with-forks, a-cutlery, is-dangerous, and a-weapon

must be the top six predicted features for the concept knife—in that order—to obtain a

perfect Spearman ρ score. Furthermore, no irrelevant features can be ranked above one

another: they all must receive the exact same predicted value.

Suppose, for the sake of example, that a property inference model returns a-utensil, found-

in-kitchens, used-with-forks, a-cutlery, is-dangerous, and a-weapon—in that order—as the top

six predicted features for the concept knife, and that the predicted value P (knife)a-weapon = 0.81

(so that the predicted values for the other relevant features are all higher than 0.81). In

this case, such a system could predict a value P (knife)requires-pilots = 0.805 for some irrelevant

feature such as requires-pilots and still receive a perfect Spearman ρ score, but only if

P (knife)Q = 0.805 for all other irrelevant features Q. If any irrelevant features—i.e. those

with a ground-truth value of 0 for the concept knife in the McRae et al. (2005) database—are

ranked differently, the system will be penalized under the Spearman ρ metric.

Suppose that we have a property inference method which achieves a perfect Spearman

ρ score. As with the parallel example for the MAP score discussed above, such a system

very well could assign a non-zero value to irrelevant features. However, in contrast to MAP,

all irrelevant features must receive the same predicted value, which must be lower than the

lowest predicted value for any given relevant feature. In such a case, we need only zero out the

lowest predicted value (by assumption assigned to all irrelevant features), and re-normalize

the remaining values—those assigned to relevant features—to fall between zero and one. This

89

Method ρ Method ρ
Property frequency 0.049 Property sum 0.042
JJ (1 step) 0.114 JJ (2 step) 0.107
Linear SVM 0.077 Linear SVM shifted 0.089
Cosine SVM 0.082 Cosine SVM shifted 0.082
Linear PLS 0.077 Linear PLS shifted 0.075
Cosine PLS 0.082 Cosine PLS shifted 0.083
ModAds equal 0.161 ModAds equal shifted 0.244
ModAds decay 0.161 ModAds decay shifted 0.243
ModAds NN 0.244 ModAds NN shifted 0.281
FoLDS 0.253

Table 3.2: Comparison of methods in Rosenfeld and Erk (2022) against FoLDS on the McRae
et al. database.

procedure will recover the correct ranking of relevant features for each unknown word, and

will assign a value of zero to all irrelevant features.

For the above reasons, I concluded that Spearman ρ is far more effective as an evaluation

metric for property inference tasks than MAP, and so do not report MAP scores in my

analysis. Following Rosenfeld and Erk (2022), I averaged over all Spearman ρ scores for

each unknown word in each fold for evaluation. FoLDS achieves a Spearman ρ of 0.253: the

second-best out of the 18 methods in Rosenfeld and Erk’s (2022) analysis (see Table 3.2).

Crucially, all of these methods use LSA vectors generated from a PPMI-transformed

co-occurrence matrix (Roller, Erk, and Boleda, 2014) obtained from a lemmatized and

POS-tagged 10.3 billion word corpus, while FoLDS uses count vectors obtained from a 24.5

million word corpus (∼420 times smaller). These results provide strong support towards the

Accelerated Learning Hypothesis of Chapter 1, demonstrating that a language model over

logical forms is capable of competitive performance against a superficial model that uses

significantly more data.

90

3.4 Discussion

In Section 3.2.1 (and Chapter 1), I argued that translating surface text to logical form has

a de-noising effect: syntactic paraphrases are effectively equivalence-classed, so that, for

example, an active sentence and its passive counterpart are mapped to the same representation.

I posited that this de-noising effect should allow language models over logical forms to obtain

meaningful embeddings from less training data, because—unlike a superficial model—they

do not need to learn to equate the various periphrastic realizations of a given proposition.

This conjecture is intrinsically linked to the Accelerated Learning Hypothesis of Chapter

1: the semantic equivalence between syntactic paraphrase constructions is itself elementary

linguistic knowledge that is inherent to the architecture of a language model over logical

forms, by virtue of its logical form inputs.

The de-noising effect afforded by the function-argument structure of logical forms addi-

tionally permits the sensitivity to negation required to generate the complex-valued word

embeddings that allow FoLDS to leverage two axes of similarity simultaneously: logical forms

reduce the various surface realizations of negation (see e.g. Chapter 2) to a single symbol (¬),

and explicitly delineate its scope, thereby facilitating the incorporation of negation into the

model’s embeddings.

Unlike similar models (e.g. Emerson, 2018; Herbelot and Copestake, 2021), the FoLDS

model introduced in Section 3.2 is sufficiently robust to be able to be applied to noisy, real-

world text data, demonstrating that the fallibility of a rule-based parser such as the ACE ERG

does not irreparably impede the use of logical forms as distributional contexts. In Section

3.3, I showed that FoLDS can achieve near-SoTA results on a property inference task—the

second-best out of 18 methods, and within 10% of the SoTA— using over 400 times less

training data than competing approaches, a result which constitutes strong evidence towards

the syntactic de-noising conjecture of Section 3.2.1, and therefore towards the Accelerated

Learning Hypothesis.

As a prototype designed to demonstrate the potential of language models over logical

91

forms, FoLDS constitutes a substantial step towards accomplishing the objectives of this

dissertation. However, as a general-purpose language model, FoLDS still leaves much to be

desired.

While the complex-valued word embeddings generated by FoLDS permit the model to

leverage two axes of similarity simultaneously (see Section 3.2.5), the use of complex-valued

embeddings is fairly non-standard in the field of NLP (and machine learning in general).

Although complex-valued neural networks do exist, these architectures are in their infancy

and typically rely on converting the complex values to real numbers (e.g. as polar coordinates)

to be passed through a real-valued model, as complex derivatives are not conducive to

standard optimization algorithms such as gradient descent (Bassey, Qian, and Li, 2021). The

few extant, truly complex-valued neural network architectures do not enjoy a high degree

of infrastructural support in common machine learning libraries such as PyTorch10 and

TensorFlow11.

Further compounding this problem is the fact that FoLDS only generates count vectors:

the resulting embeddings are very sparse (∼200,000-dimensional) and therefore will fail to

capture latent features to the same extent as reduced-dimensionality representations. The

scarcity of complex-valued machine learning architectures effectively precludes the application

of any practical dimensionality-reduction techniques to FoLDS embeddings, and severely

limits the model’s potential range of downstream tasks, restricting its applications to those

contexts in which we are able to explicitly hard-code prediction algorithms, such as in Section

3.3.3.

Equally problematic is the fact that FoLDS can only generate static word vectors: there

is no straightforward way to obtain dynamic—or phrase- and sentence-level—embeddings

from these representations. The model’s inability to distributionally represent linguistic units

beyond the level of the word further limits its utility, prohibiting its application to more

advanced NLP tasks. For these reasons, it will be necessary to employ a more powerful, neural
10https://pytorch.org/
11https://www.tensorflow.org/

92

https://pytorch.org/
https://www.tensorflow.org/

architecture in order to accomplish the main objective of this dissertation: demonstrating

the viability of language modeling over logical forms.

93

Chapter 4

Graph-based FoLDS (GFoLDS)

In Chapter 3, I introduced and evaluated the FoLDS model, which generates complex-valued

word vectors drawn from a fuzzy-logical model world imperatively constructed from logical-

form representations of sentences in a corpus. I showed that FoLDS outperforms all but

one label-propagation algorithm—and other machine learning architectures—on a property

inference task while using a pretraining corpus roughly 420 times smaller than these competing

approaches, thereby demonstrating the feasibility of language modeling over logical forms.

However, the deficiencies of this architecture—namely its sparse, complex-valued static word

embeddings—present a severe limitation to the model’s application to a wider range of

downstream tasks.

As discussed in Chapter 3, the above-mentioned limitations of FoLDS suggest two

fundamental desiderata to consider when constructing a language model over logical forms:

(i) the embeddings generated by such a model should be real -valued, in order to permit the

model to more readily interface with downstream neural architectures; and (ii) the model

should be capable of generating dynamic (i.e. context-sensitive) embeddings to facilitate its

employment in NLP tasks necessitating awareness of linguistic units beyond the level of the

word.

To address these desiderata, I introduce in this chapter the Graph-based Formal-Logical

94

Distributional Semantics (GFoLDS) model: a modified transformer (Vaswani et al., 2017)

encoder architecture—specifically, GFoLDS is a variant of the graph transformer paradigm

introduced in Wu et al. (2021) (see Section 4.1.2)—that takes as input directed graph

representations derived from Dependency MRS (DMRS; see Copestake, 2009 and Section

4.1.1) structures. As an encoder transformer, GFoLDS by default generates real-valued,

contextual embeddings: as discussed in Chapters 2 and 3, I do not claim that transformers

in and of themselves are problematic, merely that superficial transformers are. Transformers

in general are a “tried and true” architecture that have achieved SoTA results in applications

ranging from NLP to computer vision (e.g. Dosovitskiy et al., 2020; Carion et al., 2020; Wang,

Yeshwanth, and Nießner, 2021) and computational biology (e.g. Rives et al., 2021; Abramson

et al., 2024).

While more recent LLMs have been trending towards encoder-decoder (e.g. Lewis et al.,

2020; Raffel et al., 2020, etc.) or decoder-only (e.g. Brown et al., 2020; Touvron et al., 2023;

OpenAI, 2023, etc.) transformers for sequence-to-sequence or generative models (respectively),

such architectures are not applicable to the objectives of this dissertation. In the context

of graph-based NLP models, encoder-decoder architectures are typically applied to graph-

to-sequence (i.e. graph-to-text) tasks: for example, decoding semantic representation graphs

(such as DMRS) into the text to which they correspond (e.g. Hajdik et al., 2019; Wang, Wan,

and Jin, 2020; Wang, Wan, and Yao, 2020; Beck, Haffari, and Cohn, 2018; Guo et al., 2019;

Zhang et al., 2020b, etc.; see Section 4.1.3). On the other hand, while a graph-to-graph

decoder architecture for generating logical representations—for example, for chain-of-thought

reasoning (see e.g. Wei et al., 2022)—is certainly an interesting avenue of research, this falls

decidedly outside of the scope of this dissertation and is therefore left to future work: a

tentative path towards constructing such a model is outlined in Chapter 7.

As a graph (encoder) transformer, GFoLDS is more well-suited to the task of language

modeling over logical forms than sequential encoder transformers—i.e. those that take a

linearly-ordered sequence of tokens as input, e.g. (Devlin et al., 2019; Liu et al., 2019; He

95

et al., 2021, etc.); graph representations are not necessarily required to construct a transformer

LM over logical forms, but this format has two desirable properties in particular that motivate

their employment in this role.

First, graph representations permit permutation-invariance: a graph representation of a

formula such as (for example) ϕ∧ψ is equivalent (i.e. isomorphic) to that of the formula ψ∧ϕ.

If the logical formulas were encoded as strings, any model over those string representations

would need to incorporate linear positional encodings in order to read the formulas in

a meaningful way. Such an approach renders the model vulnerable to learning spurious

correlations with respect to specific orders of operands of commutative operators such as

conjunction and disjunction. Conversely, graph representations are also sufficiently flexible to

encode linear order when necessary—e.g. for logical implication ϕ→ ψ—via (for example)

edge labeling or Levi encoding (Levi, 1942).

Second, graph representations facilitate the encoding of rich structures such as the scope

of logical operators: for example, the restriction of a quantifier can be represented as the set

of nodes dominated by (the node corresponding to) that quantifier in the graph. While such

structures can be encoded in string representations of logical formulas using (for example)

parentheses, this approach once again runs the risk of the model learning spurious correlations

with respect to sequences of purely structural symbols—for example, three parentheses in a

row.

These desirable properties of graphs with respect to logical-form representations have led

to their employment in several semantic frameworks. In Section 4.1, I provide an overview of

DMRS—the specific graph-based framework that I employ with the GFoLDS model—and

discuss the current literature on the use of graphs in deep learning in general and their

applications to NLP in particular.

In Section 4.2, I define the architecture of the GFoLDS model, and then discuss the

preprocessing steps that I take to convert DMRS graphs into GFoLDS inputs in Section

4.3. Finally, in Section 4.4, I describe the details of GFoLDS’ pretraining procedure—which

96

allows the model to be fine-tuned on a variety of downstream tasks (see Chapter 5)—and

its masked node modeling (MNM) pretraining objective, which is analogous to the masked

language modeling objective used to pretrain many encoder transformer LMs (e.g. Devlin

et al., 2019; Liu et al., 2019; He et al., 2021, etc.).

4.1 Background and Related Work

In this section, I describe the DMRS framework from which the GFoLDS model’s input

graphs are derived (Section 4.1.1). I then provide an overview of current methods in deep

learning for modeling graph data (Section 4.1.2), and survey existing applications of these

methods within the domain of NLP (Section 4.1.3).

4.1.1 Dependency MRS (DMRS)

Figure 4.1: DMRS representation of the sentence “Every bored person saw Mary yesterday.”

DMRS is a semantic framework designed to simplify MRS (see Chapter 3 and Copestake

et al., 2005) by encoding MRS structures as labeled, directed acyclic dependency graphs

(Copestake, 2009). Note that this graphical format is equivalent to MRS: the process of

representational simplification to DMRS does not result in a loss of information.

Given an MRS structure M , let GM = (V,E) be its corresponding DMRS graph, where V

denotes the set of nodes and E the set of directed edges x ℓ−→ y (with labels ℓ) from x ∈ V to

y ∈ V . For each elementary predication (hereafter predicate) of M , there is a corresponding

97

node with the same label in V : there is a one-to-one correspondence between the nodes V of

GM and the predicates of M .

Note that, by construction, every MRS variable x—regardless of type: entity, event,

etc.—is the zeroth-place argument (i.e. ARG0) of a unique predicate ϕ—such an x is referred

to as the intrinsic (or characteristic) variable1 of ϕ. The intrinsic variables of predicates

corresponding to nouns are typically entity-type, while those of predicates corresponding to

verbs, adjectives, and adverbs are typically event-type.

These intrinsic variables of MRS permit DMRS to omit variables entirely (see Figure

4.1). For each predicate ϕ, let A(ϕ) denote the set of argument label, variable pairs (ℓ, x) of

ϕ, where ℓ ∈ {ARG1 ,ARG2 ,RSTR, . . . }, excluding ARG0 : for example, (ARG2 , x) ∈ A(ϕ)

indicates that x is the second-place argument of ϕ. For each (ℓ, x) ∈ A(ϕ), there is an edge2

ϕ
ℓ−→ I(x) in GM , where I(x) is the unique predicate in M such that x is the ARG0 of

I(x)—i.e. x is the intrinsic variable of I(x).

As an example, consider the MRS structure corresponding to the sentence “she read the

book ” in Equation 4.1.

h1 : read_v_1 (e1, x1, x2)

h4 : pron(x1)

h5 : pronoun_q(x1, h6, h7)

h9 : the_q(x2, h10, h11)

h12 : book_n_of (x2, i1)

h6 =q h4, h10 =q h12

(4.1)

1The converse does not necessarily hold: all variables are the intrinsic variable of some predicate, but not
all predicates have an intrinsic variable (e.g. quantifiers).

2DMRS also includes secondary link labels (/QEQ and /NEQ) attached to the primary link labels ARG1,
ARG2, etc., in order to encode underspecified scopal constraints. Scopal constraints are not relevant to the
GFoLDS model, and I omit these secondary labels when constructing GFoLDS inputs from DMRS graphs. I
refer interested readers to Copestake (2009) for a discussion of secondary link labels and the scopal constraints
that they represent.

98

Here, the first-place argument of each non-quantifier predicate is its intrinsic variable

(quantifiers do not have intrinsic variables): I(e1) = read_v_1 , I(x1) = pron, and I(x2) =

book_n_of .

Figure 4.2: The DMRS graph derived from the MRS structure in Equation 4.1.

The MRS structure in Equation 4.1 yields the DMRS graph G in Figure 4.2: the first-place

argument (ARG1) of read_v_1 is the intrinsic variable of pron (x1), so there is an edge

read_v_1 ARG1−−−→ pron in G. As the second-place argument (ARG2) of read_v_1 is the

intrinsic variable of book_n_of (x2), there is an edge read_v_1 ARG2−−−→ book_n_of , and so

on.

In MRS, features/properties3 are associated with variables. For example, a singular noun

or past-tense verb is expressed by assigning the NUM:SG or TENSE:PAST feature to the

intrinsic variables of their respectively corresponding predicates. DMRS, on the other hand,

encodes features as attributes of predicates: each feature of a given variable x in M is assigned

to I(x) in GM (see Figure 4.3).

The use of these simpler DMRS structures results in streamlined graphs with significantly

fewer nodes when compared to those derived from standard MRS, thereby facilitating the use

of semantic graph representations as input to the GFoLDS model discussed in Section 4.2

below. Graph data, however, represents a drastically different domain than those typically

modeled with neural architectures (e.g. text and images), requiring specialized architectures

to adapt to such structures.
3Roughly equivalent to the Chomskyian notion of phi-features (person, number, gender, tense, etc.); see

e.g. Adger and Harbour (2008).

99

Figure 4.3: DMRS graph from Figure 4.1, with node features included. Features are
highlighted in red; a dashed arrow ϕ 99K x indicates that ϕ is a feature of the node x.

4.1.2 Graph Neural Networks (GNNs)

In comparison to graphs, modalities such as images and text have considerably more regular

structure: images are always rectangular arrays of pixel values, and text data is invariably

arranged as a linear sequence of characters or tokens. This facilitates machine learning over

such data, as architectures can (relatively) easily be designed with appropriate structural priors

due to such regularity. For example, linear positional encodings in superficial transformers (see

Vaswani et al., 2017) and the implicit linearity encoded via recurrence in LSTMs (Hochreiter

and Schmidhuber, 1997) yield architecural awareness of the sequentiality of textual data,

while convolution kernels in convolutional neural networks (CNNs; LeCun et al., 1989) directly

account for the translation-invariance inherent in image data.

Constructing effective structural priors with respect to graph data is considerably more

difficult, due to its comparative irregularity. We cannot employ transformer-like linear

positional encodings, as nodes in a graph are not typically totally-ordered (and graph data

would not be of interest if they were). Nor can we define graph convolution kernels in an

identical manner to those employed by CNNs: while every pixel in an image has the same local

neighborhood structure4—one above, one below, one to the left, and one to the right—local

neighborhoods in a graph vary across nodes.
4Although pixels at the edges of a raw image do not share this exact neighborhood structure, images are

typically padded around the edges during preprocessing in order to uniformize pixel neighborhood structures.

100

There are various approaches to applying the techniques of deep learning to graph

structures; I will ignore random-walk-based and transductive5 methods (e.g. Perozzi, Al-

Rfou, and Skiena, 2014; Yang, Cohen, and Salakhudinov, 2016) in this section, and focus

on inductive, message-passing Graph Neural Networks (GNNs): models which learn node

representations by iteratively passing information between nodes along graph edges (Chami

et al., 2022).

4.1.2.1 Graph Convolutional Networks

One such GNN architecture, the Graph Convolutional Network (GCN; Kipf and Welling,

2017), generalizes the notion of CNNs to graph data: the kernels convolve over a given node’s

local neighborhood (i.e. the set of nodes to which it is directly connected via graph edges),

regardless of its structure. Given a graph G = (V,E), each node v ∈ V is assigned an initial

embedding H(0)
v ∈ RC0 , which is typically based on the label/features of v. The GCN itself

consists of L GCN layers, where for each 1 ≤ i ≤ L, the ith layer contains Ci convolution

kernels. The output of the final layer is then typically passed to a feed-forward network for

node classification.

The output H(i) ∈ R|V |×Ci of the ith layer is given in Equation 4.2 below, where σ is a

non-linear activation function (ReLU is used in Kipf and Welling, 2017), H(i−1) ∈ R|V |×Ci−1

is the output of the previous layer (or the initial embeddings, if i = 1), and Θ(i) ∈ RCi−1×Ci is

the layer’s learnable weight matrix: each column of Θ(i) is a convolution kernel. Â ∈ R|V |×|V |

is the degree-normalized graph adjacency matrix with added self-connections: Âkk = (dk)
−1,

Âjk = (
√
djdk)

−1 if k → j ∈ E (i.e. the jth and kth nodes are edge-connected in G),

and Âjk = 0 otherwise, where dk is the degree—the number of nodes to which it is edge-

connected—of the kth node plus one.

H(i) = σ
(
ÂH(i−1)Θ(i)

)
(4.2)

5Learning representations on a fixed graph, in comparison to inductive approaches, which are designed to
generalize representations to unseen graphs.

101

Letting Ĥ(i) = H(i−1)Θ(i), note that Ĥ(i)
jk is the dot product of the jth row vector of H(i−1)

with the kth column vector of Θ(i)—i.e. the result of applying the kth convolution kernel to

the embedding of the jth node. The jth row of Ĥ(i) is then the vector of outputs of the

convolution kernels in Θ(i) with respect to the embedding of the jth node.

The jth row vector (ÂĤ(i))j ∈ RCi of ÂH(i−1)Θ(i) is the value of the jth node embedding

before the application of σ, and is equivalent to the formula given in Equation 4.3 below,

where N (j) = {k ∈ V | k → j ∈ E} denotes the local neighborhood of the jth node.

(ÂĤ(i))j =
∑

k∈N (j)∪{j}

Âjk · Ĥ(i)
k =

(
1

dj
· Ĥ(i)

j

)
+
∑

k∈N (j)

1√
djdk

· Ĥ(i)
k (4.3)

In words: 1/dj · Ĥ(i)
j is the vector of outputs of the ith layer’s convolution kernels with

respect to the output of the previous layer’s representation for the jth node, scalar multiplied by

the inverse of the degree of the jth node (1/dj). This is then summed together with the vector

of outputs of the ith layer’s convolution kernels with respect to the kth node (Ĥ(i)
k)—scalar

multiplied by 1/
√
djdk—for each node k to which j is edge-connected in G. The term

1/
√
djdk in Equation 4.3 ensures that pairs of low-degree nodes pass more information to

each other than high-degree/low-degree pairs, which in turn pass more information to each

other than high-degree/high-degree pairs. The idea here is that high-degree nodes have many

connections, and so the information that they pass is less important: in the extreme case, a

node n that is connected to every other node in the graph would cause all nodes to converge

towards the same representation—which would then be useless for classification—without

inverse-degree weighting.

4.1.2.2 GCNs Aggregate Local Neighborhoods

Equation 4.3 demonstrates that, within a single GCN layer, each node aggregates information

from its local neighborhood (weighted by degree): each layer only permits message-passing

between pairs of edge-connected nodes. However, by stacking multiple GCN layers together,

102

Figure 4.4: An illustration of Lth-order neighborhood aggregation in an L-layer GCN (L = 2),
where node information (i.e. embeddings) is represented by colors. The initial node embeddings
H(0) are illustrated in the top left figure, the output of the first GCN layer H(1) in the top right
figure, and the output of the second layer H(2) in the bottom figure. Inverse degree-weighting
is not illustrated: any proportional difference in size between colored regions within nodes is
not intended to be meaningful.

a node can pass information to (and receive information from) nodes that are further away

in the graph structure. Concretely, a GCN with L layers allows a given node x to exchange

information with all nodes in its Lth-order neighborhood: the set of nodes y connected to x

via a path p : y ⇒ x such that the length of p is less that or equal to L.

This is illustrated in Figure 4.4. Nodes are first assigned initial embeddings H(0) (top

left); in the output H(1) of the first GCN layer (top right), each node aggregates information

from its immediate neighborhood. For example, node c (teal) aggregates information from

nodes b (red), f (orange), and g (blue).

In the second GCN layer, each node again only aggregates information from its immediate

103

neighborhood. However, as each node’s neighbor has aggregated from their respective

neighborhoods in the first layer, that information is then included in the node’s representation

in the output of the second layer H(2) (bottom of Figure 4.4).

For example, node c again aggregates information from b, f , and g; however, in the first

layer, b and g incorporated information from d (yellow), and f from e (green). Therefore,

when c aggregates from H
(1)
b , H(1)

g , and H(1)
f , its final representation H(2)

c includes H(0)
d and

H
(0)
e as well (illustrated by the yellow and green slices—respectively—in the node coloring of

H
(2)
c in Figure 4.4). Observe that H(2)

c does not include any information from a (purple) in

Figure 4.4, as a is three hops away from c in the graph structure.

Note that this L-layer aggregation permits structural information about a given node’s

Lth order neighborhood beyond a simple “bag of nodes”. For example, H(2)
c includes H(0)

b and

H
(1)
b , indicating that b is an immediate neighbor of c. On the other hand, H(2)

c only includes

H
(0)
d , which signals that d lies two hops away from c in the graph6.

Additionally, H(2)
c includes H(0)

d twice in Figure 4.4—i.e. there are two yellow slices in the

node coloring of H(2)
c —which indicates that two nodes in the immediate neighborhood of c

are edge-connected to d (b and g): this effectively corresponds to a double-magnitude H(0)
d

vector in the second-layer representation H(2)
c of c (see Equation 4.3). In contrast, H(2)

c only

includes H(0)
e once—i.e. there is one green slice in its node coloring in Figure 4.4—indicating

that only one immediate neighbor of c is edge-connected to e.

This layer-constrained information-exchange depth is a property of all such message-

passing GNNs, including Gated GNNs (Li et al., 2016), GraphSAGE (Hamilton, Ying, and

Leskovec, 2017), Graph Attention Networks (GATs; Veličković et al., 2018), and so on. The

performance of these GNNs decreases considerably as the number of layers, and therefore the

message-passing distance, increases (Wu et al., 2021). This is in fact desirable for learning on

large graphs such as citation networks and knowledge graphs (Chami et al., 2022), where

local neighborhoods are more meaningful than global structure. However, I argue in Section
6More generally, for an L-layer GCN, a node x, and another node y with (shortest) distance ℓ ≤ L from x

in the graph: H(L)
x includes H(i)

y for all 0 ≤ i ≤ L− ℓ.

104

4.1.2.3 that an architecturally-determined, fixed message passing depth is not beneficial to

language modeling over semantic representation graphs such as DMRS structures.

4.1.2.3 Graph Transformers

While a language model over semantic representation graphs such as GFoLDS must (obviously)

be sensitive to graph structures in order to capture co-occurrence relations between predicate

nodes, the model must also allow for the possibility of disconnected co-occurrence: co-

occurrence relations that occur between nodes that are not necessarily path-connected (or

are simply located far away from one another) in a given input graph.

To illustrate this point, consider the sentence “the woman crossed the street because she

needed to get to the bus stop.” Clearly, there is a relationship between the woman and she

(aside from the obvious co-indexicality): the presence of the woman as the subject of the

first clause increases the likelihood of she appearing as the subject of the second clause, and

vice-versa. However, the nodes corresponding to woman and she in any (D)MRS graph

representation of this sentence are not connected by any directed path.

Therefore, the model architecture should be sensitive to the graph structure, but not

entirely reliant upon it. This is to say that the architecture must permit global message-

passing—message-passing between nodes that are not connected in the graph structure—but

such message-passing should still be informed by the graph structure.

Wu et al.’s (2021) graph transformer paradigm presents an elegant solution to the problem

of permitting global message-passing in graph structures, by coupling a message-passing GNN

to an encoder transformer (Vaswani et al., 2017). The GNN assigns a local-neighborhood-

aware embedding to each node, and these node embeddings are then passed to the transformer,

which enables global attention (i.e. message passing). In contrast to other adaptations of

transformer architectures to graph data (e.g. Wang, Wan, and Jin, 2020; Zhang et al., 2020a;

Dwivedi and Bresson, 2020, etc.; see Section 4.1.3) that constrain the transformer’s attention

mechanism such that nodes can only attend to their respective local neighborhoods—thereby

105

restricting the model to local message passing—the transformer encoder in Wu et al.’s (2021)

paradigm attends over all nodes in the graph: none of the nodes are attention-masked from

one another in the encoder, so the degree to which they attend to each other is instead merely

parameterized by their respective locations in the graph structure, by virtue of the preceding

GNN. This grants the architectural flexibility required for the model to learn (for example)

disconnected co-occurrence relations between tokens that reliably predict the presence of one

another in certain structural configurations, despite not actually being path-connected within

any DMRS graph.

Furthermore, Wu et al. (2021) omit linear positional embeddings—such as those employed

in Vaswani et al. (2017) and other superficial NLP transformer architectures—in the trans-

former encoder: the GNN component of the architecture generates a representation of each

node that encodes its position relative to that of its neighbors in the graph. By omitting

positional encodings, the transformer encoder is invariant with respect to the linear order of

the node embeddings—an appropriate design choice to model the set (rather than sequence)

of nodes in a graph.

Wu et al. (2021) employ graph transformers for biological and chemical (i.e. molecule

graph) classification tasks, utilizing a [CLS] token (as in BERT’s next sentence prediction

task; Devlin et al., 2019) to pool over the entire graph to predict the corresponding molecule’s

biochemical properties. Critically, however, the graph transformer is a paradigm, rather than

a specific architecture: a graph transformer is simply a GNN whose node embeddings are

passed to a transformer encoder for global attention. The particular GNN7 to be employed is

left open to best fit the task at hand, permitting the use of specialized GNN architectures

adapted to (for example) labeled, directed graphs such as the DMRS structures discussed in

Section 4.1.1 above.

I adopt the graph transformer paradigm for GFoLDS due its ability to permit global
7In fact, Wu et al. (2021) leave the choice of transformer open as well, allowing for the use of more compute-

and memory-efficient transformers (e.g. Wu et al., 2020; Kitaev, Kaiser, and Levskaya, 2020; Choromanski
et al., 2021, etc.) with larger graphs.

106

message-passing between nodes—a property that is necessary for language modeling over

graph representations of logical forms (as argued above). Furthermore, this paradigm’s

above-mentioned flexibility with respect to the choice of GNN facilitates its adaptation to

DMRS-derived graphs.

In Section 4.1.3 below, I review prior applications of graph representations and GNNs

to NLP, with the goal of further motivating the particular implementation of the graph

transformer paradigm that I employ in the GFoLDS model (discussed in Section 4.2)

4.1.3 GNNs for NLP

This subsection surveys the use of graph structures and GNNs to model language data.

Section 4.1.3.1 overviews what I refer to as task-specific architectures: specialized, graph-

based models that are designed to be employed for a single task (or family of related tasks),

and cannot be applied more generally to a wider range of NLP domains. In Section 4.1.3.2, I

discuss NLP models that incorporate knowledge graphs to improve performance on a broader

variety of classification and generation tasks.

Section 4.1.3.3 then describes architectures that infuse linguistic structures—in particular,

syntactic dependency graphs and semantic representations—into superficial models, while

Section 4.1.3.4 surveys encoder-decoder, graph-to-text models that are employed for syntax-

based neural machine translation and decoding semantic representations back into natural

language.

Finally, I dedicate Section 4.1.3.5 to a description of Functional Distributional Semantics

at Scale (FDSAS; Lo et al., 2023)—an extension of the FDS (Emerson, 2018) model described

in Chapter 3—which represents the graph-based NLP model that is most directly comparable

to GFoLDS.

107

4.1.3.1 Task-Specific Models

A large proportion of the task-specific models are developed for relation extraction tasks, where

the objective is to determine the relationships8 (if any) that exist between pairs of entities in

a sentence (or body of text in general). All such models take as input syntactic dependency

graphs, typically generated by an off-the-shelf parser such as the SpaCy DependenceyParser 9.

Guo, Zhang, and Lu (2019), Hu et al. (2021), and Zong et al. (2021) employ (variants

of) the GCN architecture for relation extraction. In an attempt to overcome the global

message passing problem described in Sections 4.1.2.2 and 4.1.2.3, Hu et al. (2021) and Zong

et al. (2021) use the outputs of an LSTM and BERT (respectively) over the surface text

as the initial embeddings for the GCN model (see Section 4.1.2.1). However, the use of

the LSTM/BERT before the GCN means that these models can only use superficial cues

to parameterize unbounded message-passing, unlike the graph transformer paradigm (see

Wu et al., 2021 and Section 4.1.2.3), in which local graph neighborhood structure directly

impacts global attention.

Although Guo, Zhang, and Lu’s (2019) Attention-Guided GCN (AGGCN) employs global

attention in a similar manner to the graph transformer, global attention occurs before graph

structure is incorporated into the node embeddings—in other words, the global attention

mechanism in the AGGCN is effectively over a bag-of-words representation of the input

sentence.

Zhang, Ning, and Huang (2022) develop the Syntax-guided Graph Transformer (SGT)

model for temporal event relation classification (i.e. predicting the pairwise temporal order

of events), which takes as input a syntactic dependency parse graph of the input sentence,

along with the output of a pretrained BERT model to initialize the node embeddings. While

many other graph-adapted transformer variants (e.g. Wang, Wan, and Jin, 2020; Zhang et al.,
8These are roughly defined in terms of semantic roles (see e.g. Van Valin, 1999): for example, the relation

entity-destination exists between the agent and goal of a predicate, such as between boy and bed in “the boy
went to bed”

9https://spacy.io/api/dependencyparser

108

https://spacy.io/api/dependencyparser

2020a; Dwivedi and Bresson, 2020) incorporate graph structure by constraining attention such

that each node can only attend to other nodes within its respective local neighborhood, the

SGT model permits unbounded message-passing by permitting each node to attend to each

node to which it is path-connected, using a scalar value to encode distance—i.e. the length

of the path. However, although it is unbounded, message-passing in the SGT model is not

global : nodes cannot attend to other nodes that are not located within the same connected

subgraph. As discussed in Section 4.1.2.3, such a limitation is undesirable for the task of

language modeling over logical forms.

For document-level entity relation classification tasks, Nan et al. (2020) employ a GCN over

document graphs, a method which outperforms competing superficial approaches. The edges in

these graphs represent coreference relations across sentences, and verb/preposition-argument

dependencies within sentences. Similarly, Khot, Sabharwal, and Clark (2018) create a

weakly-linguistically informed, graph-based model in which the nodes of the graph structures

are sequences of text, and the edges between them denote syntactic roles: specifically,

subject/object and prepositions. Notably, this model outperforms (at the time) SoTA

superficial models on NLI and multiple-choice question-answering tasks.

The fact that Nan et al. (2020) and Khot, Sabharwal, and Clark (2018) outperform

superficial models with linguistically-informed, graph-based approaches supports the general

thrust of this dissertation, and the Accelerated Learning Hypothesis of Chapter 1 in particular.

However, as the graphs utilized by these authors are merely weakly linguistically-informed

and do not directly incorporate linguistic structures such as semantic representations or

syntactic parse graphs, the architectural details of these models are not of particular relevance

to the discussion at hand.

Plenz and Frank (2024) adapt pretrained language models (the authors specifically employ

BERT, although any similar LM could be used) for relation classification over knowledge

graph (KG) triples. The authors first verbalize KG relations, then tokenize the verbalization

and convert the tokenized representation back into a graph according to linear order: for

109

example, the KG relation poodle is-a−−→ dog is verbalized as “poodle is a dog”, tokenized, then

converted back into a graph as poodle → is → a → dog . This process preserves node identity,

so (for example) the KG subgraph poodle is-a−−→ dog is-a←−− labrador is converted to a graph

of the form poodle → is → a → dog ← a ← is ← labrador . Plenz and Frank (2024) then

use a combination of attention masking and the model’s existing positional embeddings

to represent these graph structures within the pretrained LM’s architecture. The authors

find that, due to the knowledge already incorporated into the LM via pretraining, this

approach in fact outperforms specialized graph architectures trained from scratch on the KG

relation-classification task: this highlights the benefit that pretraining yields for downstream

applications, even in the graph domain.

4.1.3.2 Knowledge Graph Incorporation

While Plenz and Frank (2024) employ a superficial language model for classification over

knowledge graphs, many other architectures (e.g. Zhou et al., 2018; Lin et al., 2019; Yasunaga

et al., 2022) work in the other direction, and use knowledge graphs to improve performance

on natural language tasks by giving the model access to an external database. As KGs are

typically quite large—for example, ConceptNet 5.5 (Speer, Chin, and Havasi, 2017) contains

∼34 million edges—these architectures retrieve relevant KG subgraphs by detecting concept

mentions within input sequences.

Lin et al. (2019) employ BERT and a GCN+LSTM GNN architecture over a knowledge

graph to achieve SoTA performance on commonsense reasoning classification tasks. On the

other hand, Zhou et al. (2018) use a GAT to incorporate KGs into an encoder-decoder GRU

(Cho, 2014), in order to generate more informative responses in a conversational model.

The Deep Bidirectional Language-Knowledge Graph Pretraining (DRAGON; Yasunaga

et al., 2022) model is of particular relevance to the current discussion. This model is an

implementation of the GreaseLM (Zhang et al., 2022) architecture, which retrieves KG

subgraphs from entity mentions in text, then fuses GAT-derived graph representations with

110

transformer encoder text representations at each layer of the transformer, which enriches the

LM’s input text representations with relevant external knowledge from the KG. DRAGON

extends GreaseLM by pretraining the LM/GAT hybrid (Yasunaga et al., 2022 use RoBERTa

as the language model) over text and KGs simultaneously. The model is pretrained for

masked language modeling and knowledge graph link prediction, in order to learn to reason

jointly over text and the KG.

As far as I am aware, DRAGON is the only existing graph-based NLP model—aside

from GFoLDS and FDS/FDSAS—that is pretrained on graph representations10. This model

demonstrates both the possibility and the utility of pretraining over graph representations:

Yasunaga et al. (2022) show that DRAGON outperforms the baseline RoBERTa model on a

variety of question-answering and commonsense reasoning tasks.

4.1.3.3 Linguistic Structure Infusion

The models discussed in Section 4.1.3.1 above demonstrate that linguistically-informed graph

representations can be employed with specialized architectures to improve the SoTA on specific

tasks, but are not designed to generalize to a wider range of downstream tasks. On the other

hand, while the KG-aware models of Section 4.1.3.2—and DRAGON in particular—show that

fusing graph representations in general into superficial models can improve model performance

on a greater variety of tasks, they do not demonstrate that linguistic structure can yield

task-agnostic model improvement.

To that end, Xu et al. (2021) fuse dependency parse graphs into pretrainined transformer

encoders (e.g. BERT and RoBERTa) using a learnable scalar gating mechanism that is

initialized near zero, thereby preventing the graph representations from interfering with the

pretrained model weights. The authors employ Syntax-Aware Attention (SAA) over the

dependency graphs: in a similar manner to the SGT (Zhang, Ning, and Huang, 2022) model

discussed in Section 4.1.3.1, SAA permits each node to attend to each node to which it is
10However, unlike GFoLDS and FDS/FDSAS, DRAGON is pretrained on both (knowledge) graphs and

text, simultaneously.

111

path-connected (scaled by distance). Unfortunately, SAA suffers from the same drawback

as SGT—namely, this is not truly global attention. However, this model is still able to

achieve SoTA results on relation classification, entity typing, and question answering tasks,

demonstrating the general utility of linguistically-informed LMs. Similarly, Wu, Peng, and

Smith (2021) fuse syntactic dependecy parse graphs into a pretrained BERT model with a

standard GAT, yielding SoTA results on semantic role labeling and relation extraction tasks.

While the results of Xu et al. (2021) and Wu, Peng, and Smith (2021) demonstrate that

linguistically-informed LMs can outperform their purely superficial counterparts, both of

these models employ syntactic parse graphs, and therefore do not directly demonstrate the

value of language modeling over semantic representations.

However, Prange, Schneider, and Kong (2022) show that linguistic structures can be

incorporated into the input of GPT-2 (Radford et al., 2018) to improve the model’s accuracy

and entropy on next word prediction—critically, the authors experiment with both syntactic

parse graphs and semantic representations. These graph representations are injected into

the GPT-2 model as follows: a subgraph of the structure in question—i.e. either a syntactic

parse or semantic representation—corresponding to the portion of the sentence that GPT-

2 has already generated is embedded into the model’s embedding space via GNN, then

included into the input sequence. Of particular interest to the discussion at hand is Prange,

Schneider, and Kong’s (2022) finding that Elementary Dependency Structures (Oepen and

Lønning, 2006)—an MRS-derived semantic framework that is related to DMRS—yield greater

performance improvements than syntactic (or other semantic) representations.

In a similar vein, Wu, Peng, and Smith (2021) compare the performance of syntactic and

semantic representations with respect to a linguistically-informed LM over graph represen-

tations. This model employs a Relational GCN (Schlichtkrull et al., 2018) over syntactic

and semantic graphs whose node representations are initialized from a pretrained RoBERTa

model over the surface text. The author’s findings corroborate those of Prange, Schneider,

and Kong (2022)—and extend their results to encoder transformers—by demonstrating that

112

semantic representations are more beneficial than syntactic structures for pretrained LMs.

However, as with the architectures of Hu et al. (2021) and Zong et al. (2021), this model’s

use of RoBERTa before the GCN means that global attention can only be parameterized by

the surface text, rather than the graph structure.

More generally, all of the models described thus far in this subsection are effectively

hybrid architectures that merge superficial and graph representations. Furthermore, in the

vast majority of these approaches, the superficial component of the model is initialized from

a pretrained LM such as BERT, RoBERTa, or GPT-2. This contrasts with the GFoLDS

model (see Section 4.2), which takes only graph representations as input and is pretrained

from scratch.

4.1.3.4 Graph-to-Text Models

Most graph-to-text models, on the other hand, are trained from scratch, and by definition

only take graphs as input. These models are typically encoder-decoder architectures, where

the encoder encodes the input graph into an embedding space, and the decoder decodes that

representation into text. For obvious reasons, the encoder portions of these architectures are

of particular relevance to the topic at hand, and will be the primary focus of discussion.

While Hajdik et al.’s (2019) DMRS-to-text model is of interest due to their employment of

the same semantic representation framework as GFoLDS, these authors linearize the DMRS

structures in PENMAN notation (Goodman, 2020) in order to convert them into textual

inputs that are recognizable by their sequential (LSTM) model. As discussed in Section

4.1.2.3 above, textual representations are disadvantageous for language modeling over logical

forms.

On the other hand, Guo et al. (2019) use a Densely-Connected GCN encoder with an

LSTM decoder for AMR-to-text (Abstract Meaning Representation—a graph-based semantic

representation format; Banarescu et al., 2013) and syntax-based machine translation tasks.

Similarly, Zhang et al. (2020b) use a Lightweight Dynamic GCN encoder with an LSTM

113

decoder for AMR-to-text generation. While both of these models outperform superficial

SoTA models, their use of GCN encoders precludes global message-passing.

Wang, Wan, and Jin (2020) and Wang, Wan, and Yao (2020) employ an encoder-decoder

transformer architecture for AMR-to-text generation, and adapt the transformer encoder to

graph data by constraining the attention mechanism to prevent nodes from attending to other

nodes outside of their respective local neighborhoods (as discussed in Section 4.1.2.3). As

with other, local-message-passing GNNs, this approach limits a given node’s message-passing

radius to its Lth-order neighborhood, where L is the number of encoder layers. While they

outperform superficial models over linearized AMR graphs, Wang, Wan, and Jin (2020) note

that their model’s performance degrades as the depth (i.e. the length of the longest path) of

the input graph increases beyond the number of encoder layers; it is clear that unbounded

message passing is necessary for language models over graph representations of logical forms.

In their approach to AMR-to-text generation and syntax-based machine translation, Beck,

Haffari, and Cohn (2018) attempt to overcome the unbounded message-passing problem with

the use of a Gated GNN (Li et al., 2016): a recurrent architecture that allows the network to

dynamically adapt its message-passing radius to the depth of the input graph. Unfortunately,

recurrent neural networks are known to suffer from exploding and vanishing gradients (Hanin,

2018), which results in greater training instability in comparison to non-recurrent architectures

such as transformers.

In a similar vein, Nguyen et al. (2020) attempt to overcome the unbounded message-

passing problem with respect to syntax-based machine translation via the attention-based

hierarchical accumulation mechanism. However, these authors apply hierarchical accumulation

to syntactic constituency parses (i.e. trees) obtained from the Stanford CoreNLP (Manning

et al., 2014) parser—hierarchical accumulation is only applicable to tree data, and not to

graphs in general—in particular, DMRS graphs are not trees.

114

4.1.3.5 Functional Distributional Semantics at Scale

As mentioned earlier in this section, Functional Distributional Semantics at Scale (FDSAS;

Lo et al., 2023) extends the Functional Distributional Semantics model (FDS; Emerson, 2018)

discussed in Chapter 3. Like FDS (and GFoLDS), FDSAS is a distributional model over

DMRS structures, but replaces the binary-valued individual (i.e. entity and event) embeddings

and Cardinality-Restricted Boltzmann Machine (Swersky et al., 2012) of FDS with real-valued

embeddings and a variational autoencoder (VAE; Higgins et al., 2017).

As with FDS, FDSAS begins with a DMRS-derived probabilistic graphical model M (see

Figure 4.5). Each variable xi in M—represented by the predicate I(xi) of which xi is the

intrinsic variable—is assigned a contextual embedding e⃗i as a function of the set of predicates

that take xi as an argument (including I(xi)), and the set of predicates I(xk) such that

I(xi) takes xk as an argument. The VAE encoder then produces mean and variance vectors

µi and σ2
i from e⃗i, which parameterize a Gaussian distribution N (µi, σ

2
i). The idea here is

that rather than learning to embed predicates as points in space based on their distribution,

FDSAS instead learns to embed predicates as probabilistic regions.

The model draws a representation z⃗i ∼ N (µi, σ
2
i) of xi that is then passed to the VAE

decoder, which consists of a set of unary and binary logistic classifiers t(r)(–) and t(r,a)(–, –)

(respectively; see Figure 4.5). As FDSAS takes a Neo-Davidsonian (event semantics; Dowty,

1989) perspective11, the unary classifiers t(r)(–) correspond to predicates in the DMRS

structure, while the binary classifiers t(r,a)(–, –) correspond to argument roles.

For example, in Figure 4.5, x1 is the intrinsic variable of the predicate postman, so

(assuming that the model has learned correctly) the value of t(postman)(z⃗1) should be higher

than t(r)(z⃗1) for any other predicate r. As x1 is the first-place argument of the predicate

deliver, the value of t(deliver ,1)(z⃗1, z⃗2) should be higher than t(r,a)(z⃗1, z⃗2) for any other predicate

r and argument label a—where the event-type variable x2 is the intrinsic variable of deliver
11i.e. predicates that are traditionally considered to be ≥2-ary are represented to be unary predicates

taking a single event-type argument, while binary predicates over entities and events express argument labels.
For example, the sentence “Jane sees Mary” is represented as: ∃e[see(e) ∧ arg1(e, jane) ∧ arg2(e,mary)].

115

Figure 4.5: An FDSAS probabilistic graphical model corresponding to the sentence “a postman
delivers mail quickly”. Solid, black arrows xi → tρχ indicate that the classifier tρχ takes the
(sampled representation z⃗i of the) variable xi as an argument, and red arrows tρχ → R indicate
that the DMRS predicate R is the target classifier for tρχ. Dashed, labeled arrows correspond
to the underlying DMRS argument structure (expressed via the binary classifiers t(r,a)):
R

ℓ−→ P indicates that (the intrinsic variable of) the predicate P is the ℓth-place argument of
R.

(see Figure 4.5).

The use of these binary, Neo-Davidsonian-esque argument role classifiers in FDSAS lends

flexibility to this model, allowing it to take as input a wider range of DMRS structures

than FDS, including those containing instances of adjectives, adverbs, and conjunction.

Furthermore, despite using the exact same training dataset as FDS, FDSAS massively

outperforms the former model, more than doubling the performance of FDS on the RELPRON

(Rimell et al., 2016) and GS2011 (Grefenstette and Sadrzadeh, 2011) datasets.

However, this model still faces serious limitations: namely, it is unable to account for

quantifiers, higher-order verbs12, and disjunction—such structures and predicates are simply

removed from its training dataset during preprocessing. GFoLDS, on the other hand, can

take effectively any DMRS structure (subject to certain constraints; see Section 4.3.1) as

input, including those containing quantifiers, higher-order verbs, and coordination structures.
12i.e. sentential-complement verbs such as want, need, hope, etc.

116

4.2 GFoLDS Architecture

Figure 4.6: Top-level architecture of the GFoLDS model (top) and positional encoding
network (bottom). The GNN component of GFoLDS consists of the embedding layer,
positional encoding network, and skip connection (the “Add” block in the top figure).

As discussed in Section 4.1.2.3, the GFoLDS model is an implementation of the graph

transformer paradigm of Wu et al. (2021): a GNN that encodes local node neighborhood

information, whose output is then fed to a permutation-invariant (i.e. without linear positional

embeddings) transformer encoder for global message-passing (attention). The GNN component

of GFoLDS consists of an embedding layer and positional encoding network (see Figure 4.6).

The output of the embedding layer is fed into the positional encoding network, which is

intended to provide each node with a representation of its local neighborhood in the DMRS

graph structure.

The input to the encoder stack is the sum of the respective outputs of the embedding

layer and positional encoding network. This is analogous to (and inspired by) the approach

taken by most superficial transformer LLMs (e.g. Devlin et al., 2019; Brown et al., 2020;

Lewis et al., 2020; Raffel et al., 2020; Dubey et al., 2024, etc.), in which the input to the

encoder stack for a given token t at position p is ⃗tcon+ ⃗ppos: the sum of the content embedding

for t (⃗tcon) with the positional embedding for p (⃗ppos). This architectural design choice has

the further benefit of creating a residual/skip connection—which are known to significantly

boost the performance of deep neural networks (He, Liu, and Tao, 2020; Godbole et al.,

117

2023)—between the embedding layer and the output of the positional encoding network.

As discussed in Section 4.1.2.3, the positional encoding network generates a representation

of each node that encodes its location relative to that of its neighbors in the graph. As

mentioned above, these position-aware node representations are then sent to the transformer

encoder: formally, the input to the encoder stack is E(X,G) + P (E(X,G), G), where E

denotes the embedding layer, P the positional encoding network, X the input tokens (i.e. node

labels), and G the graph structure. The encoder is not directly exposed to the graph structure:

all nodes are able to attend to any other node(s)—the degree to which they attend to one

another is merely informed by their graph-aware positional encodings (again, as discussed in

Section 4.1.2.3).

4.2.1 Embedding Layer

For the ith node ni, the output of the embedding layer e⃗i = E(X,G)i is defined in Equation 4.4

below, where F (ni) denotes the set of properties/features for the node ni, ET the token/node

embedding layer13, and EF the feature embedding layer (which maps each feature to a

dmodel -dimensional vector).

e⃗i = ET (ni) + Norm

 ∑
ϕ∈F (ni)

EF (ϕ)

 (4.4)

In words: for a node ni with features F (ni), the embedding layer outputs the sum of

the embedding of the node’s label (i.e. predicate) with the layer-normalized sum of the

embeddings of each feature in F (ni). I included the layer-normalization in Equation 4.4 in

order to prevent the feature embeddings—which can number up to six—from “drowning out”

the single predicate embedding.

For example, the output of the embedding layer for the node see_v_1 in Figure 4.3 is the

sum of ET (see_v_1) with the normalized sum of the embeddings of SF:prop14, TENSE:past ,
13A standard PyTorch embedding layer that maps each node label/predicate to a dmodel -dimensional vector.
14Indicates that the event is propositional/declarative, as opposed to e.g. interrogative (SF:ques).

118

MOOD:indicative, PERF:– (not perfective), and PROG:– (not progressive).

4.2.2 Positional Encoding Network

These summed feature and node/predicate embeddings are then passed to the positional

encoding network (see Figure 4.6). This module consists of a linear layer that projects the

embeddings from dmodel to dSWA, followed by a stack of step-wise aggregation (SWA) layers

(see Figure 4.7)—in which the output of each SWA layer is fed to the subsequent layer—that

is in turn followed by a second linear projection that projects from dSWA back to dmodel .

Figure 4.7: Architecture of an SWA layer in the positional encoding network.

In their respective adaptations of the GraphSAGE (Hamilton, Ying, and Leskovec, 2017)

and GCN (Kipf and Welling, 2017) architectures to directed graphs, Xu et al. (2018) and Tong

et al. (2020) introduce forward and backward node projection layers, which encode information

about incoming and outgoing connections (respectively) for a given node. In a similar fashion,

each SWA layer contains a forward (Equation 4.5a) and a backward (Equation 4.5b) SWA

block, which encode the nodes (i.e. predicates)—and the semantic roles thereof—mapping

into and out of a given node.

f⃗i = Norm

 ∑
nk

ℓ−→ni∈E

W
(f)
ℓ x⃗k

 (4.5a)

b⃗i = Norm

 ∑
ni

ℓ−→nk∈E

W
(b)
ℓ x⃗k

 (4.5b)

119

For a given node ni, its forward representation f⃗i—i.e. the output of the forward SWA

block—is the layer-normalized sum of W (f)
ℓ x⃗k for each node nk with an edge nk

ℓ−→ ni in the

graph structure, where W (f)
ℓ is the forward edge projection linear layer for the edge label ℓ.

This representation of each edge label as a unique projection layer is conceptually similar to

the label-specific matrices employed in Relational GCNs (Schlichtkrull et al., 2018) and Beck,

Haffari, and Cohn’s (2018) adaptation of the Gated GNN (Li et al., 2016) architecture to

labeled graphs.

The backward SWA block is architecturally identical to the forward block, but contains

distinct edge projection layers W (b)
ℓ and operates on the transpose of the graph (i.e. with

all edges reversed). Letting L denote the number of DMRS edge labels15—corresponding to

semantic roles e.g. ARG1 , ARG2 , RSTR, etc.—each SWA layer contains 2L edge projection

layers of dimension dSWA × dSWA: one forward and one backward projection for each label.

The positional encoding network therefore constitutes a large percentage of the overall model’s

parameters: ∼38% of parameters of the GFoLDS model used in this work belong to the

positional encoding network.

For a concrete example of the application of an SWA layer to an individual node, consider

the DMRS graph in Figure 4.1/4.3. In this case, the node see_v_1 receives the forward

representation ⃗fsee_v_1 (Equation 4.6a), which encodes the fact that loc_nonsp takes see_v_1

as its first-place argument. Its backward representation (Equation 4.6b), ⃗bsee_v_1 , encodes

the fact that see_v_1 takes person_n_1 and named (corresponding to the entity Mary) as

its first- and second-place arguments, respectively.

⃗fsee_v_1 = Norm(W
(f)
ARG1

⃗loc_nonsp) (4.6a)

⃗bsee_v_1 = Norm(W
(b)
ARG1

⃗person_n_1 +W
(b)
ARG2

⃗named) (4.6b)

15L = 8 in the model used in this work—see Section 4.3.2 and Table 4.1.

120

The respective forward (f⃗i) and backward (b⃗i) representations of each node ni are then

summed together and passed through a feed-forward module: this is inspired by the use

of feed-forward modules after the attention block in transformer encoder layers (see Figure

4.8), as introduced in Vaswani et al. (2017). The feed-forward modules in each SWA layer

are identical to those in BERT’s (Devlin et al., 2019) encoder layers: they consist of a

dSWA × 2dSWA linear layer, followed by GELU activation (Hendrycks and Gimpel, 2016) and

a 2dSWA × dSWA linear layer.

The feed-forward layer is then followed by a skip connection: the output of the SWA layer

for the node ni is FF (f⃗i + b⃗i) + x⃗i, where x⃗i denotes the input to the SWA layer for ni—i.e.

the output of the previous SWA layer. I included this skip connection in each SWA layer

because—as discussed above—it is well-known that residual connections drastically improve

the performance of deep neural networks (He, Liu, and Tao, 2020; Godbole et al., 2023).

As in GCNs and similar message-passing GNNs, each SWA layer aggregates local node

neighborhoods: as discussed in Section 4.1.2, stacking L SWA layers together allows each

node to aggregate information from nodes within its Lth-order neighborhood. For example, if

the model has two SWA layers, the forward representation of see_v_1 in the second SWA

layer encodes the fact that the loc_nonsp node that takes time_n as its first place argument

takes see_v_1 as its second-place argument. Similarly, its backward representation in the

second layer encodes the fact that the person_n_1 node that see_v_1 takes as its first place

argument is also taken by bored_a_1 as its first-place argument, and is in the restriction

of the every_q quantifier (and that the named second-place argument of see_v_1 is in the

restriction of proper_q).

This is to say that more SWA layers permit more widely-scoped representations (i.e. that

aggregate larger neighborhoods) of each node’s location in the graph—at the cost of a larger

model, of course—which allows the downstream transformer encoder layers to more easily

distinguish between individual nodes’ locations in the structure.

121

4.2.3 Encoder Stack

As discussed above, the outputs of the embedding layer and positional encoding network

(E(X,G) and P (E(X,G), G), respectively) are summed together and passed to the encoder

stack.

Figure 4.8: Architecture of a GFoLDS (top) and BERT (bottom) encoder layer.

The encoder layers in the GFoLDS architecture are similar to those in BERT and

Vaswani et al. (2017)16, but contain a few key differences—in particular with respect to

the residual connections and interrelated layer normalization. As shown in Figure 4.8, in a

BERT encoder layer, the layer input is directly passed to the multi-head attention module,

immediately followed by a skip connection and layer normalization. The output of this first

layer normalization is then passed to the feed-forward layer, which is again immediately

followed by a skip connection and second layer normalization.

In a GFoLDS encoder layer, the input is first layer-normalized before being passed to

the multi-head attention module, which is followed by a skip connection. The next skip

connection—in contrast to BERT—is copied before layer normalization, which itself is followed

by the feed-forward layer—that is identical to a BERT encoder feed-forward layer— and a

second skip connection; this skip connection is not followed by layer normalization.

These architectural differences are motivated by the fact that—since the introduction

of BERT—normalization outside of the residual connection (i.e. Norm(x+ f(x))) has been

shown to be problematic. Godbole et al. (2023) instead recommend normalization inside the
16Which is also the architecture employed in Wu et al.’s (2021) original formulation of the graph transformer.

122

residual (i.e. x+ f(Norm(x))), which I implement in GFoLDS.

4.3 Data Preprocessing

The procedure that I used to convert a textual corpus (see Section 4.4 for a discussion of the

particular corpus employed in these experiments) into a collection of DMRS-derived graph

inputs for the GFoLDS model is similar to that of Chapter 3: I first used Spacy’s SentenceRe-

cognizer 17 sentence-segmentation pipeline to extract individual sentences from the text. I

then used the PyDelphin (Goodman, 2019) library with the ACE/ERG parser/grammar18

(Copestake and Flickinger, 2000) to obtain a DMRS representation of each sentence, before

preprocessing the resulting DMRS structures to yield GFoLDS input graphs.

4.3.1 CARGs and OOV Items

There are two major (related) preprocessing steps that I took regarding the DMRS graphs.

First, I replaced all OOV (out-of-vocabulary) terms—as a rule-based parser, ACE/ERG

has a fixed vocabulary—with the [MASK] token. These [MASK] tokens are not targets for

prediction during the MNM pre-training procedure, as they are OOV and so there is no

possible target token: the goal is instead to have the model try to represent the OOV item

with the closest in-vocabulary token, based on the context in which the OOV item appears.

The second preprocessing step involves the CARG-bearing (“constant argument”) predi-

cates: those predicates corresponding to seasons, numbers, dates, named entities—e.g. named

in Figure 4.1/4.3—etc. Each such constant argument is represented in DMRS by a CARG-

bearing predicate, which has an additional argument slot (CARG) that is filled by the string

denoting the constant in question: for example, in Figure 4.1/4.3, the CARG of the predicate

named is “Mary” (which is removed in Figure 4.1, due to the preprocessing described in this

section).
17https://spacy.io/api/sentencerecognizer
18ERG-1214 release: https://github.com/delph-in/erg

123

https://spacy.io/api/sentencerecognizer
https://github.com/delph-in/erg

Because named entities (CARGs) and OOV items do not constitute a fixed vocabulary,

it is not feasible to tokenize them in the same manner as for the DMRS predicates—i.e. by

simply assigning an integer to each unique predicate string in the vocabulary. I therefore

attempted to incorporate two different approaches (described below) to tokenizing these items

in order to include them into the graph structure: given that BERT’s WordPiece (Wu et al.,

2016) tokenizer is designed to handle any unicode input string, both attempts to include

CARGs and OOV items into the graph structure involved tokenizing these strings with the

BERT tokenizer.

Figure 4.9: Illustration of my first attempt at incorporating CARGs and OOV items into the
graph structure (assuming that person is OOV for the sake of example). The left-hand side
represents what the graph would look like if person were in-vocabulary, while the right-hand
side illustrates the attempted solution.

In the first such attempt (illustrated in Figure 4.9), given an OOV item or CARG X,

I first used the BERT tokenizer to yield a sequence of tokens [CLS] t1 . . . tn [SEP]. I then

included that token sequence into the graph, connected by a sequence of edges according

to the tokens’ linear order, using a special edge label not used for DMRS semantic roles:

[CLS] → t1 → · · · → tn → [SEP]. For any semantic role ℓ1 “going into” X from some

other predicate Y—i.e. indicating that X is taken as an argument of Y—I included an edge

Y
ℓ1−→ [CLS] in the graph. Conversely, for any semantic role ℓ2 “going out of” X to a predicate

Z—i.e.X takes Z as an argument—I included an edge [SEP] ℓ2−→ Z in the graph.

This attempt resulted in unreasonably high loss during pretraining and poor performance

on downstream tasks. I hypothesized that it might have been too difficult for the model to

follow a path Y ℓ1−→ [CLS]→ t1 · · · → tn → [SEP] ℓ2−→ Z and comprehend that the object that

Y takes as its ℓ1 argument is the same object that takes Z as its ℓ2 argument.

124

Figure 4.10: Illustration of my second attempt at incorporating CARGs and OOV items
into the graph structure (again assuming that person is OOV for the sake of example). The
left-hand side represents what the graph would look like if person were in-vocabulary, while
the right-hand side illustrates the attempted solution.

Therefore, in the second attempt, I introduced a special token ([LEX]) that was intended

to anchor the individual tokens of CARGs and OOV items (see Figure 4.10). Under this

approach, I applied the BERT tokenizer to a given OOV item or CARG X, and discarded

the leading and trailing (respectively) [CLS] and [SEP] tokens, yielding a sequence of tokens

t1 . . . tn. I then incorporated this sequence into the graph structure by first connecting the

tokens via a series of edges in the same manner as in the first approach (illustrated in Figure

4.9): t1 → · · · → tn. This sequence was connected to the [LEX] token by including edges

ti → [LEX] (1 ≤ i ≤ n) from each token node ti to [LEX]. All semantic roles ℓ1 “going into”

X from Y were incorporated as edges Y ℓ1−→ [LEX], and semantic roles ℓ2 “going out of” X to

Z as edges [LEX] ℓ2−→ Z.

As with the approach illustrated in Figure 4.9 above, this approach was not particularly

successful, and resulted in poor performance on downstream tasks. I hypothesize that such

approaches—i.e. including a single word as a sequence of tokens in the graph structure—fail

because they result in two competing roles for the graph edges19: in some cases, graph edges

denote semantic roles between predicates (e.g. ARG1 , ARG2 , etc.), while in other situations,

the edges indicate that two or more tokens together comprise the same predicate label.
19For both approaches (i.e. those illustrated in Figures 4.9 and 4.10), I also attempted to treat every

predicate as “OOV”: tokenizing not only the strings of the CARGs/OOV items, but also the in-vocabulary
predicates as well. I had hypothesized that a potential source of confusion for the model was arising from the
mismatch between the two types of structures in the graph representations: the actual predicate nodes, and
the OOV/CARG subgraphs that were effectively intended to be treated as individual nodes. Unfortunately,
this approach did not yield significant improvement.

125

To avoid representing CARGs and OOV items as collections of multiple tokens within

the graph structure itself, I also considered having a separate OOV/CARG embedding layer.

The idea being that those items’ individual tokens would be passed through that layer, then

summed together to yield a mean-pooled representation which would then be included in

the graph as a single node embedding. Due to GFoLDS’ masked-node modeling pretraining

objective (see Section 4.4.2), however, such an approach is not feasible: it is unclear how one

would separate the individual tokens out of the OOV/CARG node embeddings outputted by

the encoder stack in order to yield predictions when those items are masked.

As neither of the attempts to incorporate CARGs and OOV items into the graph structures

were particularly successful—and as these items cannot be retained without causing the size of

the vocabulary to explode—I ultimately decided to simply remove the CARGs themselves and

keep only the CARG-bearing predicates: this amounts to, for example, replacing the sentence

“John went to the park in the spring of 2017 ” with “[NAMED] went to the park in [SEASON]

of [YEAR].” As discussed in the beginning of this section, all OOV items are simply replaced

with the [MASK] token—during both pretraining and downstream fine-tuning and inference.

The removal of CARGs and OOV items are stop-gap measures, and remain an open

problem and barrier to the performance of the GFoLDS model. This being said, the research

carried out in this dissertation is intended purely as a proof-of-concept of the viability of

language modeling over logical forms (as discussed in Chapter 1): in order to retain this

work’s focus on that bigger picture, it was occasionally necessary to bypass smaller issues such

as this, and leave their solution to future work. I therefore defer consideration of potential

future avenues for the incorporation of CARGs and OOV items into DMRS graph structures

to the discussion of future directions in Chapter 7.

4.3.2 Additional Preprocessing Steps

After removing CARGs and OOV items from the graph structures, there remain a few

(relatively less significant) preprocessing steps that I took in order to transform DMRS

126

Figure 4.11: DMRS representation of the noun phrase “the large building”.

representations into inputs for the GFoLDS model.

For the sake of semantic well-formedness, the ACE/ERG parser attempts to represent

all inputs as if they were entire sentences. For example, given the input “the large building”,

the parser will parse the noun phrase, then insert the predicate unknown20 and an edge

ARG : unknown → building_n_1 (see Figure 4.11), which indicates that there is some

unknown (presumably verbal) predicate for which the building plays an (again unknown)

semantic role (indicated by ARG). Such constructions are the only context in which the

ARG edge label appears in DMRS.

While this representational choice is sensible from the perspective of formal semantics,

it is undesirable from the viewpoint of machine learning. The fact that ARG only links

unknown to other predicates—and is always included when unknown is in the graph—makes

that predicate extremely predictable: if, during pretraining, the model is given a graph

with a masked unknown predicate, it needs only look for the ARG-labeled edge to know

that unknown is the masked node. This means that the model does not need to learn any

co-occurrence relations between unknown and other nodes in the graph in order to learn to

reliably predict the distribution of unknown.

Second, recall that each unique argument label is assigned unique forward and backward

dSWA × dSWA edge projection layers in each SWA layer (see Section 4.2.2). This is to say that

each unique edge label corresponds to 2n(dSWA)
2 parameters in the GFoLDS model, where

n denotes the number of SWA layers. If, for example, n = 2 and dSWA = 1024, then each

additional edge label adds 4,194,304 parameters to the model architecture. Given the highly

specialized function of the ARG edge label, it seems rather unreasonable to allocate so many
20Not to be confused with out-of-vocabulary/“unknown” items, which are represented in a different manner

in DMRS.

127

parameters to its representation.

Therefore, during preprocessing, I converted each ARG label to the MOD label (see

Table 4.1): another purely structural DMRS edge label that is used to indicate handle

equality between predicates when other argument-label edges alone are insufficient to do so

(Muszynska, 2020).

Additionally, I equivalence-classed argument labels involved in coordination structures—i.e.

those corresponding to logical conjunction and disjunction: for a predicate such as and_c,

DMRS includes the argument labels L-HNDL : and_c → X and R-HNDL : and_c → Y

(L-INDEX and R-INDEX , respectively, when the conjuncts are variables rather than han-

dles) denoting the left- and right-hand conjuncts X/Y (respectively) of the coordinated

structure. Logically, however, conjunction and disjunction are commutative operators:

ϕ ∧ ψ = ψ ∧ ϕ and ϕ ∨ ψ = ψ ∨ ϕ. Therefore, I replaced the edge labels L-HNDL/R-HNDL

and L-INDEX /R-INDEX with HNDL and INDEX (respectively; see Table 4.1), ignoring

the surface order of the conjuncts. This preprocessing step had the added benefit of reducing

the overall size of the GFoLDS model by 4n(dSWA)
2 parameters, as discussed above.

Finally, I removed from the graph structures all instances of focus_d and parg_d :

predicates with a purely discourse-pragmatic role, which indicate that the predicates that

they modify are focus-topicalized (i.e. fronted; Szűcs, 2014) or the subject of a passivized verb

(respectively). The inclusion of either of these predicates would run contrary to the discussion

of the Accelerated Learning Hypothesis in Chapter 1 and the related arguments in Chapter

3: namely, that one of the primary advantages of language modeling over logical forms is the

syntactic de-noising effect arising from the fact that such representations equivalence-class

syntactic paraphrases such as topicalization and passivization.

128

Original Label Interpretation/Role Replacement
ARG1 First-place argument —
ARG2 Second-place argument —
ARG3 Third-place argument —
ARG4 Fourth-place argument —
MOD Indicates a shared handle —

between two predicates
RSTR Restriction of a quantifier —
ARG Argument of the “unknown” MOD

predicate
L-INDEX Left-hand conjunct of two INDEX

coordinated variables
R-INDEX Right-hand conjunct of two INDEX

coordinated variables
L-HNDL Left-hand conjunct of two HNDL

coordinated handles
R-HNDL Right-hand conjunct of two HNDL

coordinated handles

Table 4.1: DMRS edge labels (left), the role that they play in describing meaning (center),
and the edge labels that they are replaced with (right) during preprocessing (if any: “ — ”
indicates that a label is retained after preprocessing).

4.4 Pretraining GFoLDS

In this section, I detail the procedure that I employed to pretrain the GFoLDS model for later

application to downstream tasks in Chapter 5, beginning with an overview of the model’s

pretraining corpus in Section 4.4.1. I then describe the procedure and rationale behind the

masked node modeling (MNM) objective (Section 4.4.2), before discussing the pretraining

hyperparameters and architectural configuration (i.e. number of layers, etc.) in Section 4.4.3.

4.4.1 Corpus

To assemble the corpus, I randomly selected ∼17.5 million sentences from the November

1, 2023 English Wikipedia dump21, which constitutes a total of ∼508 million words: ∼6.5

times smaller than BERT’s pre-training corpus. The ACE/ERG parser was able to parse
21https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.en

129

https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.en

∼84% of the data, for a total of ∼14.6 million DMRS-derived graphs to serve as the model’s

pretraining corpus.

After preprocessing (see Section 4.3), we are left with a total vocabulary size of 22,077

predicates (for comparison, BERT-uncased has a vocabulary of 30,522 tokens), 8 edge (i.e.

argument; see Table 4.1) labels, and 31 feature-value pairs (number, person, tense, etc.; see

Table 4.2), with ∼413 million nodes across the ∼14.6 million parsed DMRS graphs (∼28.3

nodes per graph on average).

Feature Value
PERS 1, 2, 3
NUM PL, SG
GEND F, M, M-or-F, N
PT (pronoun type) REFL, STD, ZERO
SF (sentence force) COMM, PROP, QUES, PROP-or-QUES
TENSE FUT, PAST, PRES, TENSED, UNTENSED
MOOD INDICATIVE, SUBJUNCTIVE
PROG +, –
PERF +, –
IND (individuability) +, –

Table 4.2: DMRS predicate features (left) and their corresponding values (right).

4.4.2 Masked Node Modeling

As an encoder transformer, GFoLDS is limited in terms of pretraining objectives to those

tasks which involve de-noising a corrupted input sequence. Therefore, as mentioned at the

beginning of this chapter, the pretraining objective for this model is masked-node modeling

(MNM), which is analogous to the masked language modeling (MLM) objective used to

pretrain encoder transformer LMs such as BERT (Devlin et al., 2019); although some encoder

transformers such as ELECTRA (Clark et al., 2021) are pretrained with more complex

corruption procedures reminiscent of generative adversarial networks (Goodfellow et al.,

2014), I chose to employ the simpler masking method and leave exploration of more advanced

approaches to future work.

130

The MLM procedure as introduced in Devlin et al. (2019) model proceeds as follows: given

an input sequence S comprised of tokens s1 . . . sn, ∼15% of the tokens are randomly chosen

as targets—the remaining ∼85% are ignored by the loss (i.e. error) function. Of the targets,

∼80% are chosen (randomly) to be masked—i.e. replaced by a special [MASK] token—∼10%

are randomly chosen to be replaced by another randomly chosen token, while the remaining

∼10% of the targets are left unperturbed. The model’s pre-training objective is to use the

surrounding context to de-corrupt the target tokens—i.e. predict the correct (original) token.

Under this paradigm, loss is computed in terms of mean cross-entropy (Mao, Mohri, and

Zhong, 2023) between the model’s predicted categorical distribution over the vocabulary and

the distribution with all probability mass concentrated on the target word, for each target

word in the input sequence.

For superficial models such as BERT, the goal of the MLM pretraining objective is for the

model to learn textual co-occurrence relations between tokens: by masking and corrupting

random tokens, and training the model to denoise the input, the model learns to predict the

context-dependent presence/absence of a given token based on the presence/absence—and

position—of other tokens in the context(s) in which that token appears. Similarly, the goal of

the masked-node modeling objective for the GFoLDS model is to learn logical co-occurrence

relations between predicate symbols in DMRS-derived graph representations: for example,

the model may learn that the verb see tends to occur in the past tense with a third-person

plural second-place argument.

While BERT is pretrained using next sentence prediction (NSP; see Devlin et al., 2019)

in conjunction with MLM, Liu et al.’s (2019) experimental results suggest that NSP does

not improve—and in some cases even harms—downstream performance. For this reason,

subsequent masked LMs such as RoBERTa (Liu et al., 2019), ELECTRA (Clark et al., 2021),

and DeBERTa (He et al., 2021) omit the NSP objective in their pretraining procedures.

Therefore, I also chose not to include a secondary pretraining objective for the GFoLDS

model; I discuss the possibility of utilizing a task similar to NSP in conjunction with MNM

131

in order to pretrain GFoLDS to understand entailment relations—rather than sentence-level

subsequence as with NSP—in Chapter 7, but leave the implementation of such a procedure

to future work.

4.4.3 Hyperparameters

During BERT’s pretraining procedure, while 15% of the input tokens are selected for prediction,

only 80% of the selected tokens are masked (as discussed in Section 4.4.2): this is to account

for the mismatch between the model’s pretraining and fine-tuning distributions that arises

from the fact that the [MASK] token only occurs during pretraining. However, for GFoLDS,

the [MASK] token does occur during fine-tuning as well, due to OOV items (as discussed

in Section 4.3.1). Furthermore, Wettig et al. (2023) find that higher selection rates—and

higher masking rates—result in improved performance on downstream tasks, when compared

to the selection and masking/replacement rates reported in Devlin et al. (2019). For these

reasons, I chose to mask 100% of the selected tokens during pre-training, with the slightly

higher selection probability of 20%.

For pretraining (and the subsequent experiments described in Chapters 5-6), I employed

a GFoLDS model with two SWA layers and ten encoder layers with eight attention heads

each, and set dSWA = dmodel = 1024. The MNM prediction head that I used is identical to

BERT’s MLM prediction head (aside from the difference in vocabulary size): a dmodel × dmodel

linear layer, followed by GeLU activation, layer norm, and a dmodel × 22077 (the size of the

vocabulary) linear layer.

This yields a total of ∼174 million parameters: for comparison, BERTbase (12 encoder

layers; dmodel = 768) and BERTlarge (24 encoder layers; dmodel = 1024) have ∼110 million and

∼335 million parameters, respectively.

I pretrained GFoLDS with a batch size of 16 for four epochs: although BERT is pretrained

for ∼40 epochs, Muennighoff et al. (2024) find that while re-using data for up to four epochs

results in negligibly decreased performance compared to pretraining on the same amount of

132

Figure 4.12: GFoLDS pretraining learn rate schedule.

unique data, LMs experience rapidly dimishing returns thereafter. To update the model’s

parameters, I employed the AdamW optimizer (Loshchilov and Hutter, 2017) with a weight

decay value of 10−5. I split the pre-training dataset into 200 uniformly-sized folds: the data

was randomized at each epoch by first shuffling the order that the folds were loaded, then

shuffling the order of the examples within each fold (rather than shuffling the entire dataset,

which was intractable due to hardware constraints). I set an initial learn rate of 10−5, with a

linearly interpolated learn rate between values of 2× 10−5 at the end of the first epoch, 10−5

at the end of the second, 3× 10−6 at the end of the third, and 10−6 at the end of the fourth

(see Figure 4.12). That is to say that the learn rate increased linearly from 10−5 to 2× 10−5

during the first epoch, decreased linearly from 2× 10−5 to 10−5 during the second epoch, and

so on (the learn rate was updated at the end of each fold—i.e. 200 times per epoch).

Although many recent models (e.g. Touvron et al., 2023; Dubey et al., 2024, etc.) utilize

more sophisticated learn rate schedulers (such as cosine annealing; Loshchilov and Hutter,

2016), I chose to use a linearly interpolated learn rate due to its flexibility. Note that the

learn rate always updates at discreet points during training—regardless of the scheduler—due

to the discrete nature of neural network training datasets. Therefore, for any learn rate

scheduler σ : [0, 1]→ R+—expressed here as a function mapping the proportion of the training

procedure that has been completed thus far to a learn rate—we can set the value of a linearly

133

Figure 4.13: GFoLDS pretraining cross-entropy loss.

interpolated learn rate scheduler to σ(u) at each update point u ∈ [0, 1]: linear interpolation

can approximate any scheduler.

At the specified batch size of 16, the model trained at a rate of roughly 25 hours and 36

minutes per epoch on a single NVIDIA A100 GPU, for a total training time of 102 hours and

24 minutes. GFoLDS converged to a cross-entropy loss of ∼1.3331 at the end of the fourth

epoch (see Figure 4.13).

4.5 Discussion

In this chapter, I introduced the GFoLDS model: a pretrained, transformer encoder model

over logical forms that is intended to address the deficiencies of the FoLDS model of Chapter 3.

In the following chapter (Chapter 5), I compare this pretrained GFoLDS model to competing

approaches on a range of logical-reasoning-oriented tasks. As discussed in Chapter 1, the

primary objective of this dissertation is to demonstrate the feasibility and utility of language

modeling over logical forms: as such, in Chapter 6, I analyze the GFoLDS model discussed in

the present chapter, with a particular focus on its propensity to scale to larger amounts of

pretraining data.

134

Chapter 5

GFoLDS: Experiments

In Chapter 4, I introduced the GFoLDS model, an implementation of the graph transformer

paradigm (Wu, Peng, and Smith, 2021) over DMRS-derived graph representations of logical

forms. In this chapter, I evaluate GFoLDS on a variety of logical-reasoning-oriented tasks,

with the goal of comparing GFoLDS to a comparably-sized superficial LM (BERT; Devlin

et al., 2019), in order to provide evidence in support of the Accelerated Learning Hypothesis

of Chapter 1. In particular, I aim to demonstrate that language models over logical forms

are able to learn from less data than their superficial counterparts.

To that end, I first pretrain BERTbase and BERTlarge comparison models (Section 5.1),

which are architecturally identical to the original BERT models introduced in Devlin et al.

(2019), but pretrained on the same amount of data as GFoLDS. While I also evaluate GFoLDS

against the original BERT models, the comparison models allow for a more direct evaluation

of the two architectures.

In Section 5.2, I then evaluate GFoLDS and the four BERT models on the RELPRON

(Rimell et al., 2016) dataset, which evaluates the models’ ability to compose relative clauses

in a distributional setting. As the FDS (Emerson, 2018) and FDSAS (Lo et al., 2023) models

discussed in Chapter 4 were also evaluated on RELPRON, this dataset additionally provides

the opportunity to compare GFoLDS to these two distributional models over logical forms—its

135

most directly-comparable counterparts.

In the next experiment (Section 5.3), I fine-tune GFoLDS and the BERT models on the

Stanford NLI (SNLI; Bowman et al., 2015) dataset, which demonstrates GFoLDS’ applicability

to large-scale NLP benchmarks containing multi-sentential data. I then turn to a binary

sentence-classification task: the MegaVeridicality V2.1 (White et al., 2018) factuality dataset.

Finally, I evaluate GFoLDS and BERT on the property inference task derived from the

McRae et al. (2005) dataset discussed in Chapter 3, which allows for a direct comparison

between GFoLDS, BERT, and the FoLDS model introduced in Chapter 3.

By evaluating GFoLDS on such a wide range of tasks, I intend to demonstrate the

versatility and practical viability of this model—and, therefore, of language modeling over

logical forms in general.

5.1 BERT Comparison Models

As discussed above, in the experiments in Sections 5.2-5.5 of this chapter, I compare GFoLDS

to the BERTbase- and BERTlarge-uncased models of Devlin et al. (2019), both of which are

pretrained on roughly 6.5 times more data than the GFoLDS model introduced in Chapter

4. Furthermore, both BERT models were pretrained for roughly 40 epochs, whereas I used

only four pretraining epochs for the GFoLDS model: in total, the BERT models received

∼65 times more pretraining than GFoLDS.

While the Accelerated Learning Hypothesis (ALH) posits that language models over

logical forms can learn useful representations with less data than their superficial counterparts

(as discussed in Chapter 1), the gulf between the respective amounts of pretraining afforded

to GFoLDS and BERT may be too large to provide a fair comparison of these models with

respect to the ALH. Therefore, in order to obtain a more accurate baseline for comparison, I

additionally pretrained BERTbase- and BERTlarge-uncased models from scratch on the same

dataset as GFoLDS (the surface sentences, of course, rather than the DMRS graphs), for the

136

same number of epochs.

The purpose of these BERT comparison models is to demonstrate that GFoLDS is able to

outperform a superficial transformer when pretrained on the same amount of data. If this is

in fact the case, it then follows that GFoLDS would be able to perform as well as BERT with

less training data, thereby providing strong experimental evidence in support of the ALH.

5.1.1 Pretraining Data

In the context of the current discussion, there is an important distinction to be made between

base training data and actual training data. Recall that, in Chapter 4, I randomly selected

∼17.5 million sentences from English Wikipedia to serve as the GFoLDS model’s pretraining

corpus: I will refer to this set of sentences as the base dataset. However, as discussed in

Chapter 4, the ACE/ERG (Copestake and Flickinger, 2000) MRS parser employed over the

base dataset was only able to parse ∼84% of those sentences, and the ∼16% of the sentences

that remained unparsed were discarded: I will refer to the ∼84% of the base dataset (∼14.6

million sentences) that was successfully parsed as the actual dataset.

On the other hand, for a superficial LM such as BERT that employs a WordPiece (or

similar) tokenizer (Wu et al., 2016), the actual dataset is identical to the base dataset (in

the absence of data deduplication or similar preprocessing techniques): these models do not

use a rule-based (or any) parser, and so do not suffer from the resulting loss of data due to

unparsable sentences.

From a purely theoretical perspective, the most fair comparison between BERT and

GFoLDS would be obtained by pretraining the BERT models on GFoLDS’ actual dataset.

This would demonstrate that language models over logical forms are able to outperform

comparable superficial models, under the assumption that we have a rule-based parser that

is able to parse any sentence, while leaving the actual development of such a parser to future

work.

The objectives of this dissertation, however, are not purely theoretical. While I do

137

admittedly leave some pieces of this puzzle to future work (such as the CARG/OOV items

discussed in Chapter 4), the overall goal of this work is to demonstrate the validity of

the Accelerated Learning Hypothesis of Chapter 1—and the general viability of language

modeling over logical forms—given the tools that are currently available. If (solely for the

sake of example) GFoLDS were able to match the performance of BERT with ∼84% of the

pretraining data, then—given the ACE/ERG parser’s ∼84% successful parse rate—this model

would provide no practical benefit over its superficial counterparts.

I therefore chose to pretrain the BERT comparison models on GFoLDS’ base—rather than

actual—dataset. This means that, in reality, the BERT comparison models are pretrained

with ∼1.19 times more actual data than GFoLDS.

5.1.2 Hyperparameter Selection

Given the differences in size and modality between the BERT and GFoLDS models, the

best-performing set of pretraining hyperparameters for BERT on this dataset is not likely to

be identical to those of GFoLDS. I therefore evaluated a variety of different hyperparameter

configurations for BERT in order to yield the most equitable comparison with GFoLDS. Due

to the relatively higher cost associated with training BERTlarge—which is over three times

larger than BERTbase—I performed the majority of the trials with BERTbase, then transferred

the best-performing configuration found during these experiments to BERTlarge.

I first evaluated BERTbase on three different configurations across which the learn rate

schedule, weight decay, and masking rates varied: all three configurations employed the next

sentence prediction (NSP) secondary pretraining task discussed in Chapter 4 (and Devlin

et al., 2019). Due to hardware constraints, I was limited to using a batch size of 16 for all of

the BERT pretraining trials.

The first configuration (a) was identical to that which I employed for GFoLDS in Chapter

4: a weight decay value of 10−5; a linearly interpolated learn rate between values of 10−5 at

the beginning of the first epoch, 2× 10−5 at the end of the first epoch, 10−5 at the end of

138

Figure 5.1: Learning rates (top left), cross-entropy loss values (top right), and MAP scores on
the RELPRON development split (bottom) across training steps for the BERTbase pretraining
trials (a)-(c).

the second, 3× 10−6 at the end of the third, and 10−6 at the end of the fourth; and a token

selection probability of 20% with a masking probability of 100%.

In the second configuration (b), I used a hyperparameter configuration that was identical

to that of the original BERT models: a weight decay value of 10−2; linear learn rate warmup to

10−4 across the first 1% of the training run (with linear decay thereafter); and a token selection

probability of 15% with a masking and replacement rates of 80% and 10%, respectively.

However, the original BERT models were pretrained with a batch size of 256, while trials

(a) and (b) use a batch size of 16. Although I was not able to increase the batch size due to

hardware constraints (as mentioned above), Granziol, Zohren, and Roberts (2022) show that

learn rate scaling proportional to batch size can be used to control for the effect of batch size

on training loss. I therefore introduced a third trial (c): this configuration was identical to

that of (b) with the exception of the peak learn rate value, which I scaled down to 2× 10−5

to account for the difference in batch size.

I then evaluated trials (a)-(c) with respect to loss and a validation task that does not

139

require fine-tuning: the development split of the RELPRON (Rimell et al., 2016) dataset

(discussed further in Section 5.2). The results of these experiments are shown in Figure 5.1.

The model clearly failed to learn with the original BERT pretraining hyperparameters

(b)—likely due to the mismatch in batch size discussed above—and finished training with

a minimum cross-entropy loss of 7.8864 and a peak MAP score of 0.040 on the RELPRON

development set. Of the two remaining configurations, (c) outperformed (a) both in terms of

minimum cross-entropy (4.2988 vs. 4.8716) and peak MAP score (0.207 vs. 0.137).

As discussed in Chapter 4, Liu et al. (2019) suggest that pretraining with the secondary

NSP objective does not improve—and in some cases may even hinder—model performance. I

therefore conducted a fourth hyperparameter trial with BERTbase, using the same configura-

tion as in (c) above, but excluding the NSP task. The results of this experiment are shown

in Figure 5.2.

Figure 5.2: Cross-entropy loss values (left), and MAP scores on the RELPRON development
split (right) across training steps for the BERTbase pretraining configuration (c) with and
without the secondary NSP objective.

The variant of configuration (c) without NSP outperforms the original trial in terms of

cross-entropy loss (3.8339 vs. 4.2988, respectively; see Figure 5.2)—this is to be expected: the

loss values reported for the variant with NSP are the sum of the NSP loss with the masked

language modeling (MLM) loss. However, the non-NSP configuration also outperforms its

NSP counterpart in terms of peak MAP score on the RELPRON development set: 0.267 vs.

0.207 (respectively). For this reason, I selected the non-NSP variant of the model pretrained

with hyperparameter configuration (c) as the BERTbase comparison model to be used in the

140

experiments in the remainder of this chapter.

I then pretrained BERTlarge with (non-NSP) hyperparameter configuration (c). As shown

in Figure 5.3 (configuration (a)), this model failed to converge: it finished training with a

minimum cross-entropy loss of 7.1856 and a peak MAP score of 0.039 on the RELPRON

development set. As larger neural networks are more prone to overfitting (Caruana, Lawrence,

and Giles, 2000; Salman and Liu, 2019), I scaled the peak learn rate by a factor of 1/10 in

trial (b) to account for the difference in size between the BERTbase and BERTlarge models.

Figure 5.3: Learning rates (top left), cross-entropy loss values (top right), and MAP scores on
the RELPRON development split (bottom) across training steps for the BERTlarge pretraining
trials (a)-(b).

Trial (b) vastly outperformed (a) in terms of both minimum cross-entropy loss (5.1998

vs. 7.1856) and peak RELPRON development split MAP score (0.039 vs. 0.083), although

it trails far behind the best-performing BERTbase configuration by both metrics (3.8339

vs. 5.1998 cross-entropy; 0.267 vs. 0.083 RELPRON MAP). This substantial difference in

performance between the base and large BERT variants is to be expected: it is well-known

that larger neural networks require more training data in order to properly converge (see e.g.

Hoffmann et al., 2022; Muennighoff et al., 2024), and BERTlarge has over triple the amount

141

of parameters and double the number of encoder layers as the base version of the model—I

pretrained these comparison models on 6.5 times less data and for ten times fewer epochs

than was intended for the BERT models.

With a batch size of 16, BERTlarge trained at a rate of roughly 35 hours and 20 minutes per

epoch on a single NVIDIA H100 GPU, for a total training time of 141 hours and 20 minutes.

For comparison, GFoLDS and BERTbase—each trained on an NVIDIA A100—required 102

hours and 24 minutes, and 46 hours and 36 minutes, respectively (total training time).

5.2 RELPRON

I then evaluated GFoLDS and the comparison and original BERT models on the RELPRON

(Rimell et al., 2016) dataset. I additionally compare these models’ performance to that

of FDS (Functional Distributional Semantics; Emerson, 2018) and its successor, FDSAS

(Functional Distributional Semantics at Scale; Lo et al., 2023)—discussed in Chapters 3 and

4, respectively—which, as distributional models over DMRS graphs, are both conceptually (if

not architecturally) closely related to GFoLDS.

The objective of this section is to compare the ability of GFoLDS to comprehend subset

relations between the denotations of concepts at a compositional (as opposed to simply

lexical) level to that of these competing approaches.

5.2.1 Task Description

This dataset consists of terms (nouns), each paired with a hypernym and up to ten unique

properties : relative clauses that restrict that hypernym. For example, the term telescope is

paired with the hypernym device, and has the property astronomers use (among others—see

Table 5.1). These entries are divided into development and test splits: the development set

consists of 65 terms and 518 properties (∼8 properties per term on average), and the test set

contains 73 terms and 569 properties (∼7.8 properties per term).

142

The task is then to retrieve the properties that pertain to a given term, without including

those that do not. Precisely, for each term t, the objective is to rank all of the properties in

(the split in question of) the dataset, such that all of the relevant properties of t—i.e. those

that pertain to t—are ranked above the irrelevant properties (those that do not).

As this task is effectively one of information retrieval, the evaluation metric is Mean

Average Precision (MAP; Zhu, 2004), a common measure of performance in information

retrieval tasks. Given a set of queries (terms) T , the MAP score for T with respect to a given

information retrieval system is the mean of the average precision scores AP(t) ∈ (0, 1] for

each t ∈ T . Given a term t, a list of N “documents” (properties) π(t)
(–) ordered/ranked by the

information retrieval system with respect to t, and a set of relevant properties R(t) for t, the

average precision for t is given in Equation 5.1 below.

AP(t) =
N∑
i=1

Pi(π
(t)
(–)) · 1(π

(t)
i ∈ R(t))

|R(t)|
(5.1)

Where Pi(π
(t)
(–)) =

∑i
k=1 1(π

(t)
k ∈ R(t)) / i, and 1(π

(t)
i ∈ R(t)) = 1 if π(t)

i ∈ R(t), and 0

otherwise. For example, suppose that N = 6 and R(t) = {π(t)
1 , π

(t)
2 , π

(t)
4 , π

(t)
6 }: the first-,

second-, fourth-, and sixth-highest-ranked terms are relevant, while the third- and fifth-

highest-ranked are not. Then the numerators of Equation 5.1 are calculated as in Equation

5.2.

P1(π
(t)
1) · 1 + P2(π

(t)
2) · 1 + P3(π

(t)
3) · 0 + P4(π

(t)
4) · 1 +

P5(π
(t)
5) · 0 + P6(π

(t)
6) · 1

= 1/1 + 2/2 + 0 + 3/4 + 0 + 4/6

= 3.42

(5.2)

Which is then divided by |R(t)| = 4 to yield AP(t) = 0.855; the average precision score

rewards ranking relevant properties over irrelevant ones, and penalizes ranking irrelevant

143

properties over relevant ones.

Note that, in the RELPRON dataset, properties may be either subject-type—in which

the corresponding hypernym is the subject of the relative clause—or object-type (where the

hypernym is the object of the relative clause): for example, astronomers use and detects

planets are object- and subject-type properties of telescope, respectively (see Table 5.1).

The dataset additionally includes confounder properties, which deliberately contain other

terms in the dataset. For example, the property astronomers use of the term telescope

is a confounder, because it contains the word astronomer, which is another term in the

RELPRON dataset: these confounder properties are designed to fool models that rely on

shallow heuristics such as lexical overlap.

To evaluate the GFoLDS and BERT models on RELPRON, I constructed templates out of

each (term, hypernym, property) triple: for example, the triple (telescope, device, astronomers

use) yields the template “a device that astronomers use is a telescope” (see Table 5.1). I

then replace the target term—in the above example, telescope—with the [MASK] token. The

probability that the model assigns to the masked token being a given term is then taken as

proportional to the probability that the property applies to that term.

For example, given the property/template pi = “A device that astronomers use is a

[MASK]”, I extract—from the distribution over the [MASK] token—the probability p(t)i that

the model assigns to each term t in the RELPRON dataset. For each term t, I then order the

list of properties π(t)
(–) with respect to t (see Equation 5.1) according to p(t)(–): π

(t)
1 = argmax k(p

(t)
k)

is the property/template k in which t is assigned the highest probability out of all of the

properties in the dataset, π(t)
2 = argmax

k:k ̸=p
(t)
1
(p

(t)
k) is the is the property/template k in which

t is assigned the second -highest probability, and so on.

Due to the small size of the dataset and lack of a training split, there is no fine-tuning

involved in this task: the frozen, pre-trained models were used to obtain the term probabilities

p
(t)
i .

144

Term/Hypernym Properties Corresponding Templates
telescope/ astronomers use “A device that astronomers use
device is a telescope”

observatory has “A device that an observatory
has is a telescope”

dome houses “A device that a dome houses
is a telescope”

observer points “A device that an observer
points is a telescope”

has a mirror “A device that has a mirror is
a telescope”

uses a lens “A device that uses a lens is a
telescope”

detects planets “A device that detects planets
is a telescope”

views stars “A device that views stars is a
telescope”

tracks the sky “A device that tracks the sky
is a telescope”

collects light “A device that collects light is
a telescope”

assignment/ student writes “A document that a student
document writes is an assignment”

student submits “A document that a student
submits is an assignment”

teacher reads “A document that a teacher
reads is an assignment”

receives a grade “A document that receives a
grade is an assignment”

ruin/ archaeologist discovers “A building that an archaeo-
building logist discovers is a ruin”

dig excavates “A building that a dig
excavates is a ruin”

archaeologist studies “A building that an archaeo-
logist studies is a ruin”

collector restores “A building that a collector
restores is a ruin”

jungle covers “A building that the jungle
covers is a ruin”

excavation reveals “A building that excavation
reveals is a ruin”

Table 5.1: The RELPRON dataset entries for the terms telescope, assignment, and ruin,
including their respective hypernyms, properties, and the verbalized templates derived from
each (term, hypernym, property) triple.

145

5.2.2 Results

Model All No-UNK/NE
GFoLDS — 0.651
BERTlarge 0.768 0.769
BERTbase 0.667 0.690
BERT-Clarge 0.047 0.056
BERT-Cbase 0.174 0.193
FDS 0.160 —
FDSAS 0.580 —

Table 5.2: MAP scores on the RELPRON test split, where BERT-Cbase/BERT-Clarge denote
the comparison models discussed in Section 5.1. Note that I did not directly evaluate FDS
and FDSAS, but rather record the scores reported in Emerson (2018) and Lo et al. (2023),
respectively.

To evaluate the GFoLDS model, I discarded all examples that contained CARG-bearing

predicates1 (i.e. named entities) or OOV items: this subset of the dataset corresponds to the

“No-UNK/NE” column of Table 5.2. As discussed in Chapter 4, CARGs and OOV items are

effectively ignored by the GFoLDS model: given that each template only contains four content

words—namely, the hypernym, verb, relative clause subject/object, and the target term—the

GFoLDS model is effectively blind to (at least) one third of the context in templates that

contain OOV items or CARG-bearing predicates. If the target term itself is an OOV item or

CARG-bearing predicate, then the task is impossible: in this case, the term is not in the

vocabulary, and so it can never be predicted by the model.

After discarding all examples containing CARGs or OOV items, the resulting No-UNK/NE

subset of the RELPRON test split contains 63 terms (∼86% of the original 73) and 421

properties (∼74% of the original 569), for a total of ∼6.68 properties per term on average.

On the No-UNK/NE subset, GFoLDS achieves a MAP score of 0.651, placing the model

behind BERTbase (0.690) and BERTlarge (0.769), as shown in Table 5.2. Although GFoLDS

did not surpass the performance of either BERT model, it is reasonably competitive with

BERTbase, a remarkable result given that GFoLDS was pretrained on ∼6.5 times less data.
1While none of the RELPRON examples actually contain named entities, the ACE/ERG parser occasionally

misinterprets common nouns as named entities.

146

On the other hand, the two BERT comparison models—which were pretrained on the same

amount of data as GFoLDS—both lag far behind GFoLDS, with MAP scores of 0.193 and

0.056 for BERT-Cbase and BERT-Clarge, respectively. It may initially seem counterintuitive

that BERT-Clarge obtained a lower MAP score than BERT-Cbase despite the fact that the

original BERTlarge model outperformed BERTbase. However, note that BERT-Cbase also

outperformed BERT-Clarge on the RELPRON development split in Section 5.1.2: as discussed

in that section, such results are to be expected due to the difference in size between the

base and large BERT architectures, and the limited amount of pretraining data that these

comparison models were exposed to.

Unfortunately, the pre-trained FDS and FDSAS models are not publicly available, so

I was unable evaluate them on the No-UNK/NE subset of the dataset in order to obtain

a direct comparison to GFoLDS. However, based on the differences in MAP scores from

the complete RELPRON test set to the No-UNK/NE subset for BERTbase/BERT-Cbase and

BERTlarge/BERT-Clarge (+0.023/+0.019 and +0.001/+0.009, respectively; see Table 5.2), it

seems quite reasonable to assume that GFoLDS (0.651) would outperform FDS (0.160) and

FDSAS (0.580) on that data.

Model outputs for GFoLDS and the four BERT models on this task are available on

GitHub2.

5.3 Natural Language Inference (SNLI)

Next, I compared GFoLDS to the BERT models with respect to a natural language inference

(NLI) task; there are two salient reasons that I elected to evaluate the model on this benchmark.

First, (as discussed in Chapter 2), NLI tasks require logical reasoning capabilities that extend

beyond basic linguistic competence (including real-world knowledge; Richardson et al., 2020),

and therefore provide an excellent setting in which to assess the soundness of the Accelerated

Learning Hypothesis of Chapter 1. Additionally, NLI is a large-scale NLP benchmark with
2https://github.com/mjs227/GFoLDS/tree/main/RELPRON_model_outputs

147

https://github.com/mjs227/GFoLDS/tree/main/RELPRON_model_outputs

practical real-world applications, and GFoLDS’ successful performance of an NLI task would

therefore represent a substantial step towards achieving one of the primary objectives of this

dissertation: namely, demonstrating the general viability of language modeling over logical

forms.

In this experiment, I specifically chose to evaluate GFoLDS (and the BERT models) on

the Stanford NLI (SNLI; Bowman et al., 2015) dataset over other popular NLI datasets such

as MultiNLI (MNLI; Williams, Nangia, and Bowman, 2017) and Adversarial NLI (ANLI;

Nie et al., 2020). The MNLI dataset is problematic for the GFoLDS model in particular, as

one of the sources from which its examples are derived is the Linguistic Data Consortium’s

Switchboard3 corpus, which consists of transcribed telephone conversations. Transcribed

speech data contains many incomplete sentences and fragments, which are exceedingly difficult

to successfully parse for the ACE/ERG rule-based parser that I employ to generate DMRS

graphs for GFoLDS.

ANLI, on the other hand, was designed to be exceptionally difficult: the current best-

performing model on that dataset, T5 (Raffel et al., 2020), has three billion parameters

(∼10 times larger than BERTlarge; ∼20 times larger than GFoLDS) and only achieves 81%

accuracy—for comparison, BERTlarge achieves 91.1% accuracy on SNLI. The best-performing

BERT variant (InfoBERT; Wang et al., 2021) attains a mere 75% accuracy on ANLI. The

extreme difficulty of this dataset would therefore hinder any attempt to discern differences

between the performances of the models that I evaluate in this experiment.

5.3.1 Task Description

Although I provide a description of NLI tasks in Chapter 2, I do so again here for the sake of

convenience. An NLI dataset such as SNLI consists of (premise, hypothesis, label) triples

(Pi, Hi, Li). The label Li = entailment if the truth of the premise necessitates the truth of

the hypothesis; Li = contradiction if the truth of the premise necessitates the falsity of the
3https://catalog.ldc.upenn.edu/LDC97S62

148

https://catalog.ldc.upenn.edu/LDC97S62

Premise Hypothesis Label
It is raining The ground is wet Entailment
The man is lying down The man is standing Contradiction
It is December It is five o’clock Neutral

Table 5.3: Example (premise, hypothesis) pairs for each of the three NLI labels.

hypothesis; and Li = neutral otherwise. Examples of all three classes are given in Table 5.3.

The SNLI dataset consists of 550,152 training examples and 10,000 test examples4—both

sets contain a roughly balanced proportion of examples from each of the three classes. The

ACE/ERG parser was able to successfully parse ∼88% of these (premise, hypothesis) pairs,

for a total of 8,813 DMRS graph pairs in the test split (3,053 entailment, 2,887 contradiction,

2,873 neutral) and 487,590 in the training split (163,670 entailment, 162,476 contradiction,

161,444 neutral).

5.3.1.1 Constructing Graph Representations

The GFoLDS architecture described in Chapter 4 cannot process multiple sentences at once:

the largest linguistic unit that it is capable of taking as input is a single sentence. While this

obviously represents a serious general limitation of the model (and I suggest a potential avenue

to overcoming this impediment in Chapter 7), it also presents a more immediate complication

with respect to the SNLI dataset, whose examples are given as (premise, hypothesis, label)

triples. Given a premise Pi with the corresponding hypothesis Hi, it is technically possible

to simply represent the pair (Pi, Hi) as the disjoint union G(Pi)⊕G(Hi) of their respective

DMRS-derived graphs: no aspect of the GFoLDS architecture inherently assumes that input

graphs are connected.

However, the disjoint union G⊕G′ of any two DMRS-derived graphs does not encode

any information about the linear order between G and G′. It is therefore impossible for the

GFoLDS model to know which graph denotes the premise, and which denotes the hypothesis.
4Along with a further 10,000 examples in the development set, which I do not use in this experiment.

149

While this is not problematic for identifying examples of contradiction5, order is necessary to

distinguish between the entailment and neutral labels: for example, (it is raining, the ground

is wet) is an example of entailment, while (the ground is wet, it is raining) is neutral.

This is to say that we need a representation that combines G(Pi) and G(Hi) into a single

graph G(Pi, Hi) that encodes the order between the premise and hypothesis (in a way that

GFoLDS is able to interpret), while also preserving all of the information of G(Pi) and

G(Hi). This is achieved using the DMRS if_x_then token, which corresponds (perhaps

unsurprisingly) to the word “if”.

Figure 5.4: Illustration of the derivation of G(Pi, Hi) (bottom) from G(Pi) (top left) and
G(Hi) (top right) for the contradiction example (the man is lying down, the man is standing).
At first glance, it may seem unusual that the premise is connected to if_x_then by the ARG2
edge, while the hypothesis is connected by ARG1 , especially if one verbalizes G(Pi, Hi) as
“if the man is lying down, then the man is standing”. The intended verbalization, however, is
“the man is standing, if the man is lying down”: here, the numerical edge labels correctly
correspond to the surface order of the conjuncts.

To be precise: G(Pi, Hi) is constructed from G(Pi)⊕G(Hi) by adding the node if_x_then,

and then inserting edges if_x_then ARG1−−−→ htop(G(Hi)) and if_x_then ARG2−−−→ htop(G(Pi)),

as illustrated in Figure 5.4. Given an MRS structure M and its DMRS-derived graph G(M),

htop(G(M)) = p is the node corresponding to the predicate p that outscopes6 all other
5(P → ¬H)↔ (¬(P ∧ ¬¬H))↔ (¬(P ∧H))↔ (¬(H ∧ ¬¬P))↔ (H → ¬P)
6Outscopes is a technical term in (D)MRS, and does not necessarily refer to e.g. quantifier or negation

scope.

150

predicates p′ in M . I defer interested readers to Copestake et al. (2005) for an in-depth

description of the outscopes relation in (D)MRS—for the purposes of the discussion at hand,

it suffices to state that htop(G(M)) typically corresponds to the main verb of the sentence

from which M is derived.

Note that this is in fact how the if_x_then token functions in DMRS: given a sentence S =

“if S1, then S2”, the DMRS representation D(S) is (roughly7) equivalent to the graph formed

from D(S1) ⊕D(S2) by adding an if_x_then node, and inserting edges if_x_then ARG2−−−→

htop(D(S1)) and if_x_then ARG1−−−→ htop(D(S2)). Critically, this means that the structure of

G(Pi, Hi) is familiar to the pretrained model. This representational format therefore satisfies

the desiderata laid out above: namely, G(Pi, Hi) preserves the information of G(Pi) and

G(Hi), while encoding the order between the premise and hypothesis in a manner that is

interpretable to the GFoLDS model.

5.3.1.2 CARGs and OOV Items

There is of course the danger that the presence of out-of-vocabulary (OOV) items and CARG-

bearing predicates in the data could negatively effect GFoLDS’ performance: as discussed in

Chapter 4, I removed (masked) all CARGs and OOV items from the model’s DMRS input

graphs during pretraining. For example, consider the premise “the dog walked towards the

door ” and the hypothesis “the dog sat towards the door ”—a clear example of contradiction.

Now suppose (for the sake of example) that walk and sit are not in GFoLDS’ vocabulary. In

this case, the model would only see “the dog [MASK] towards the door ” and “the dog [MASK]

towards the door ”—it would be impossible to make an informed prediction.

In order to evaluate the effect that CARGs and OOV items may have on GFoLDS’

performance on the SNLI dataset, I additionally constructed No-UNK/NE subsets (as in

Section 5.2) of the SNLI train and test splits in which all examples containing OOV items or

CARG-bearing predicates—in either the premise or hypothesis—were omitted. This removed
7Note that htop(D(S)) = if_x_then. This is, however, irrelevant to the GFoLDS model, whose input

graphs do not include any information about htop nodes.

151

roughly half of the examples from each split, resulting in a total of 4,496 test (1,607 entailment,

1,452 contradiction, 1,437 neutral) and 254,926 training examples (90,211 entailment, 83,027

contradiction, 81688 neutral). I evaluated all five models (GFoLDS and the four BERT

models) on both the full dataset and the No-UNK/NE subset.

5.3.2 Results

Figure 5.5: SNLI fine-tuning learn rate schedule for GFoLDS and the BERTbase models.

On both datasets (the full SNLI dataset and the No-UNK/NE subset), I fine-tuned

GFoLDS and BERTbase for five epochs with a batch size of 16, a weight decay value of

10−5, an initial learn rate of 10−5, and a linearly-interpolated learn rate (updated at each

batch) between values of 2× 10−5 at the end of the first epoch, 3× 10−5 at the end of the

third, 10−6 at the end of the fourth, and 10−7 at the end of the fifth (see Figure 5.5). I

fine-tuned BERTlarge with identical hyperparameters, except all learn rates mentioned above

were multiplied by 1/10 for this model, as BERTlarge was unstable with the higher learn rate

used for GFoLDS and BERTbase.

The fine-tuning hyperparameters for the BERT models were admittedly not selected

using as rigorous of a search procedure as that employed in Section 5.1.2. However, the

accuracy that the original BERTbase and BERTlarge models attained with the hyperparameter

configurations described in the above paragraph (see Table 5.4) matched that reported for

those models on the SNLI dataset in Zhang et al. (2020c). It is therefore reasonably safe to

152

Model All No-UNK/NE
GFoLDS 81.0% 80.8%
BERTlarge 91.1% 90.7%
BERTbase 90.7% 90.0%
BERT-Clarge 62.0% 60.1%
BERT-Cbase 79.9% 78.3%

Table 5.4: Model accuracy on the original SNLI test set (All) and the No-UNK/NE subset.
The best results for each experiment (column) are highlighted in bold.

assume that this set of hyperparameters is (near-)optimal for the BERT models with respect

to this data.

The results of these experiments are shown Table 5.4. BERTlarge attains the highest

accuracy out of all five models on both the original dataset and the No-UNK/NE subset

(91.1% and 90.7%, respectively). GFoLDS trails behind the original BERT models on both

datasets, with 81.0% accuracy on the original dataset and 80.8% on the No-UNK/NE subset.

However, GFoLDS outperforms the BERT comparison models of Section 5.1—BERT-Cbase

and BERT-Clarge—which achieve respective accuracies of 79.9% and 62.0% on the original

datset, and 78.3% and 60.1% on the No-UNK/NE subset. As in Section 5.2.2, BERT-Cbase

outperformed BERT-Clarge, despite the fact that BERTlarge outperformed BERTbase. Again,

this is to be expected: BERT-Cbase converged to a significantly lower cross-entropy loss during

pretraining than BERT-Clarge (see Section 5.1.2), due to the small size of the pretraining

corpus and the relative difference in parameter count between the two models.

Note that the original BERT models were pretrained with the additional Next Sentence

Prediction (NSP; see Devlin et al., 2019) objective, which is intended to teach the model to

detect relationships between pairs of sentences. It is possible that the BERT comparison

models’ performance on this task was negatively impacted by the fact that they were not

pretrained with the NSP objective (as discussed in Section 5.1.2). However, RoBERTa

(Liu et al., 2019)—which is architecturally identical to BERT, but was not pretrained with

NSP—matches the performance of the original BERT on SNLI (Sun et al., 2020), suggesting

that pretraining with the NSP objective does not significantly improve performance on this

153

dataset.

Table 5.4 shows that none of the models experienced a substantial decrease8 in accuracy

on the No-UNK/NE subset in comparison to the original dataset. Critically, this suggests

that the GFoLDS model is fairly robust to the masked OOV items and CARGs (see the

discussion in Chapter 4) present in the original dataset. While the inability to incorporate

these items into the DMRS-derived input graphs still represents a serious limitation to the

model—such as in the RELPRON experiment (Section 5.2), where entire examples containing

CARGs and OOV items had to be removed—these results suggest that this shortcoming may

not present a significant barrier with respect to NLI tasks.

Overall, these results demonstrate that GFoLDS is able to outperform superficial models

when pretrained on similar amounts of data on SNLI. As discussed above, NLI tasks such

as SNLI are large-scale NLP benchmarks with practical real-world applications. These

experimental results therefore represent a significant step towards accomplishing one of the

main overarching objectives of this dissertation: demonstrating the viability of language

modeling over logical forms.

5.4 Factuality

I then compared GFoLDS to the four BERT models on a factuality task. The primary

objective of this section is to establish a baseline for comparison in Chapter 6, where I

probe the model for weaknesses and study its propensity to scale to larger amounts of data.

However, as it requires classifying entire sentences, this task also presents an opportunity

to showcase one of the key advantages of GFoLDS over its predecessor—the FoLDS model

introduced in Chapter 3—which is incapable of performing NLP tasks necessitating awareness

of linguistic units beyond the level of the word.
8A (slight) decrease in accuracy is to be expected, as the No-UNK/NE subset is roughly half the size of

the original dataset (as discussed in Section 5.3.1).

154

5.4.1 Task Description

The objective in factuality tasks is to determine whether the event denoted by a subordinate

clause is presupposed to be factual, given the context of the matrix clause. To be clear, the

task is not to determine the actual factuality of the event, but rather the speaker/author’s

communicative intent: whether or not they are intending to portray the event as factual. For

example, in the sentence “someone agreed that a particular thing happened”, the subordinate

event (underlined) is presupposed to be factual, while in the sentence “someone was tricked

into thinking that a particular thing happened”, the event is presupposed to be non-factual.

Sentence Label
A particular person didn’t mean to do a particular thing 1
Someone didn’t tell a particular person to do a particular thing 0
John wasn’t upset that a particular thing happened 1
John didn’t find that a particular thing happened 0
A particular person was thrilled to do a particular thing 1
A particular person yearned to have a particular thing 0

Table 5.5: Examples of sentences (with subordinate clauses underlined) and their correspond-
ing labels from the MegaVeridicality 2.1 dataset. A label of 1 indicates that the subordinate
event is presupposed to be true, while a label of 0 indicates that is not.

For this experiment, I used the MegaVeridicality V2.1 dataset (White et al., 2018), which

consists of 5,026 examples, each with ten annotations of yes—i.e. the event is presupposed to

be factual—no, or maybe. I converted this dataset to a binary classification task by assigning

a values of 1, 0, and −1 to the labels yes, maybe, and no (respectively): I then assigned each

example a value of 1 (i.e. the subordinate event is portrayed as factual) if its mean value

was greater than zero, and 0 otherwise. A value of 0 does not necessarily indicate that the

subordinate event is presupposed to be non-factual, merely that it is not presupposed to be

factual. Examples from the MegaVeridicality V2.1 dataset—along with their corresponding

(binary) labels—are given in Table 5.5.

Note that there are few heuristics that models can leverage when performing this task.

For example, negation is present in the matrix clauses of both positive and negative sentences:

155

in Table 5.5, “a particular person didn’t mean to do a particular thing” has a label of 1,

while “someone didn’t tell a particular person to do a particular thing” has a label of 0.

Furthermore, negation can—but doesn’t necessarily—trigger an alternation between the

positive and negative classes: “John didn’t find that a particular thing happened ” has a label

of 0, while “John found that a particular thing happened ”, “John was upset that a particular

thing happened ”, and “John wasn’t upset that a particular thing happened ” all have a label

of 1. The models are therefore forced to learn the effect of negation on class labels for each

matrix verb in the dataset.

As with the RELPRON task (Section 5.2), I removed all examples containing OOV items

and/or CARG-bearing predicates from the dataset, due to the lower amount of content words

per example in MegaVeridicality V2.1 in comparison to SNLI. This resulted in the removal of

1,900 examples from the dataset, leaving 3,126 remaining examples (∼62%). I withheld 20%

as a test set (626 examples), which resulted in a total of 2,500 training examples.

5.4.2 Results

I trained all five models with a learn rate of 10−6, a weight decay value of 10−5, and a batch

size of 8. I trained the models for an indefinite number of epochs, halting training once

performance on the test set did not improve for five epochs (i.e. early stopping).

This is admittedly not good evaluation practice: when comparing models, early stopping

should never be determined by test set performance. However, as mentioned above, this

experiment is primarily intended merely to establish a baseline for further evaluation in

Chapter 6, rather than to demonstrate the effectiveness of the GFoLDS model. Given this

intention—and the relatively small size of the dataset—I decided to forgo the creation of a

development split in order to retain sufficient data to both fine-tune and evaluate the models.

In Table 5.6, I report each model’s best test set performance—i.e. five epochs before

stopping training. BERTlarge reaches the highest peak accuracy (85.6%), while GFoLDS trails

the two original BERT models at 81.3%. Additionally, both original BERT models take seven

156

Model Accuracy Epochs
GFoLDS 81.3% 11
BERTlarge 85.6% 7
BERTbase 84.2% 7
BERT-Clarge 76.2% 3
BERT-Cbase 78.1% 15

Table 5.6: Results on the MegaVeridicality V2.1 binary classification task. Epochs denotes
the number of epochs to reach peak accuracy; total training time includes an additional five
epochs due to early stopping.

epochs to reach peak accuracy, while GFoLDS requires eleven.

However, GFoLDS outperforms both of the BERT comparison models of Section 5.1.

With an accuracy of 78.1%, BERT-Cbase is more competitive with GFoLDS than BERT-Clarge

(76.2%), but requires more epochs to converge (15 vs. 3). Again, these results suggest

that—when pretrained on a similar amount of data—GFoLDS can outperform superficial

models on this task.

5.5 Property Inference

In Chapter 3, I compared the simple, count-based FoLDS model trained on Simple English

Wikipedia (∼85.9 times smaller than BERT’s pre-training corpus) to the results obtained

by Rosenfeld and Erk (2022) on the McRae et al. (2005) property inference database. In

this section, I evaluate GFoLDS and the four BERT models on this task, with the primary

objective of directly comparing the performance of GFoLDS to that of FoLDS. A secondary

goal of this experiment is to compare the performance of FoLDS to a more advanced superficial

architecture (i.e. BERT) than the LSA-vector-based model employed by Rosenfeld and Erk

(2022) in their analysis.

157

5.5.1 Task Description

Feature Value
a-utensil 0.634 (19/30)
found-in-kitchens 0.600 (18/30)
used-with-forks 0.534 (16/30)
a-cutlery 0.500 (15/30)
is-dangerous 0.467 (14/30)
a-weapon 0.367 (11/30)

Table 5.7: McRae et al. (2005) feature norms for the concept knife (duplicated from Table
3.1). For all other features Q, F (knife)Q = 0.

Although I describe property inference tasks—and the McRae et al. (2005) database in

particular—in Chapter 3, I summarize that description here for the sake of convenience.

A property inference task uses as its dataset a feature norm database, which consists

of a set of concepts (words) and a set of features, in which each concept w is assigned a

feature vector F (w) ∈ Rn (see Table 5.7), where n is the number of features in the database.

The value of F (w)Q is the value of the feature Q for the word w. The McRae et al. (2005)

feature norm database—which I employed in this experiment (and in Chapter 3)—consists of

541 concepts and 2,526 features; feature values are obtained from experimental participants’

judgments.

Rosenfeld and Erk (2022) create ten random folds consisting of 50 concepts each from the

dataset. On each fold, the concepts within the fold represent the set U of unknown words:

words which have been observed in text but are not grounded to real-world concepts. The

concepts outside of the fold represent the set K of known words. For each unknown word

u ∈ U , the feature vector F (u) is withheld (i.e. zeroed out): the task is to reconstruct F (u)

given the features of the known words in K and the similarity between u and each word

in K. The evaluation metric used for this task is Spearman’s rank correlation coefficient

(Spearman ρ; Spearman, 1904), which measures the degree to which the order (i.e. ranking)

of two variables is correlated.

In their experiments, Rosenfeld and Erk (2022) use the Modified Adsorption (ModAds;

158

Talukdar and Crammer, 2009) label propagation algorithm over LSA vectors generated

from a PPMI-transformed co-occurence matrix obtained from a lemmatized and PoS-tagged

10.3 billion word corpus: ∼420 times larger than FoLDS’ training set, ∼32 times larger

than GFoLDS’, and ∼5 times larger than BERT’s. In Chapter 3, I employed a simple,

vector-addition based approach to this task, as the complex-valued vectors generated by the

FoLDS model are incompatible with ModAds. However, GFoLDS and BERT both generate

real-valued vectors, and so I follow Rosenfeld and Erk (2022) and employ the ModAds

algorithm over these models’ embeddings in this experiment.

I refer interested readers to Talukdar and Crammer (2009) and Rosenfeld and Erk (2022)

for an in-depth description of the ModAds algorithm. For the purposes of the current

discussion, it suffices to note that ModAds is a label propagation algorithm over a weighted,

undirected graph G = (V,E) with associated feature vectors F (x) ∈ Rn for each x ∈ V ,

where for any two nodes x, y ∈ V , the weight of the edge x→ y ∈ E is intended to correspond

to a notion of similarity between x and y.

For each of the five models (GFoLDS and the four BERT models) M , the nodes of its

corresponding ModAds graph GM are the set of concepts/words in the McRae et al. (2005)

database, while the weight of each edge x→ y ∈ E is the cosine distance between the model’s

embeddings of x and y, clipped between 0 and 1.

5.5.2 Results

Hyperparameter Value(s)
nn 1, 5, 10, 20
µcont 10−8, 10−4, 10−2, 1, 10, 100, 1000
µabdn 10−8, 10−4, 10−2, 1, 10, 100, 1000
µinj 1
β 2

Table 5.8: ModAds hyperparameters and their corresponding sets of possible values used in
the grid search procedure.

In their analysis, Rosenfeld and Erk (2022) use the first fold as a development split, and

159

perform a grid search over the ModAds hyperparameter9 values listed in Table 5.8. They

then use the best-performing set of hyperparameters from the first fold to evaluate on the

remaining nine. I replicate this procedure with GFoLDS and the four BERT models in this

experiment.

Model Spearman ρ
GFoLDS 0.205
FoLDS 0.253
Rosenfeld & Erk 0.281
BERTlarge 0.241
BERTbase 0.247
BERT-Clarge 0.134
BERT-Cbase 0.167

Table 5.9: Property inference results on the McRae et al. (2005) database.

The results of this experiment are given in Table 5.9. Rosenfeld and Erk’s (2022) approach

outperforms all other models evaluated in this experiment, with a Spearman ρ of 0.281.

GFoLDS (ρ = 0.205) outperforms the BERT comparison models—BERT-Cbase (0.167) and

BERT-Clarge (0.134)—but trails behind (the original) BERTbase (0.247) and BERTlarge (0.241).

Notably, the FoLDS model of Chapter 3—which was trained on 13.2 times less data

than GFoLDS, 85.9 times less than BERT, and 420.4 times less than Rosenfeld and Erk’s

(2022) model—performs the second-best on this task, with a Spearman ρ of 0.253. This

demonstrates that, for some applications, a carefully-constructed, specialized LM over logical

forms can outperform larger, superficial models trained on significantly more data. This

result constitutes a strong demonstration of the advantages of language modeling over logical

forms.

While the original BERT models outperform GFoLDS by a fairly wide margin, it is

important to note that Rosenfeld and Erk (2022) outperform both BERT models using LSA

embeddings generated from ∼5 times more data than was used to pretrain BERT. Given

the relative simplicity of LSA vectors in comparison to BERT embeddings, it stands to
9Again, I refer interested readers to Talukdar and Crammer (2009) and Rosenfeld and Erk (2022) for an

in-depth description of these hyperparameters.

160

reason that for neural (and similar) models, more data does better on this task, and that the

model in question has less of an impact on performance: regardless of its architecture and/or

modality, a neural model must see each term in several contexts in order to learn useful

embeddings. On the other hand, a model such as FoLDS, with its carefully hand-crafted

procedure for model-world generation, can generate effective representations from a much

more sparse training signal.

5.6 Discussion

The results of this chapter (summarized in Table 5.10) demonstrate that GFoLDS is able

to compete with (near-)SoTA superficial models on a wide range of NLP benchmarks.

Although the actual BERTbase and BERTlarge models outperform GFoLDS, GFoLDS in turn

outperforms both BERT comparison models (BERT-Cbase and BERT-Clarge) on all four tasks.

The results of each of the four experiments conducted in this chapter (Sections 5.2-5.5) lend

strong support to the Accelerated Learning Hypothesis of Chapter 1: when pretrained on

the same amount of data, a language model over logical forms consistently outperforms

comparably-sized superficial LMs across a broad range of NLP tasks. This indicates that

language models over logical forms present a promising avenue to overcome the impending

LLM training-data bottleneck discussed in Chapter 1.

To the best of my knowledge, the experiments in Sections 5.2-5.5 of this chapter represent

the first time that a language model pretrained solely over logical forms has been evaluated

on a wide range of downstream tasks. In particular, GFoLDS’ capacity to be applied to tasks

ranging from RELPRON (Section 5.2) to SNLI (Section 5.3)—while remaining competitive

with a high-quality superficial model such as BERT (and vastly outperforming BERT-

C)—demonstrates this model’s versatility, and these results therefore represent a significant

step towards accomplishing the second main objective of this dissertation: demonstrating the

practical viability of language modeling over logical forms.

161

Model GFoLDS BERTlarge BERTbase BERT-Clarge BERT-Cbase

Parameters 174 335 110 335 110
(Millions)
Pretraining Epochs 4 ∼40 ∼40 4 4
Pretraining Data: 508/427 3,300/ 3,300/ 508/508 508/508
Base/Actual 3,300 3,300
(Millions of
Words)
Pretraining Time ∼1× 1011 ∼4.4× 1013 ∼1.4× 1013 ∼6.8× 1011 ∼2.2× 1011

(FLOPS)
RELPRON 0.651 0.769 0.690 0.056 0.193
MAP
(No-UNK/NE
Subset)
SNLI Accuracy 81.0% 91.1% 90.7% 62.0% 79.9%
(Full Dataset)
MegaVeridicality 81.3%/11 85.6%/7 84.2%/7 76.2%/3 78.1%/15
V2.1
Accuracy/Epochs
McRae et al. (2005) 0.205 0.241 0.247 0.134 0.167
Dataset Spearman ρ

Table 5.10: Summary of the main results of this chapter for GFoLDS and the four BERT
models, along with a comparison of all five models’ pretraining datasets and parameter counts.
The distinction between base and actual pretraining data is discussed in Section 5.1.1.

While the FDS (Emerson, 2018) and FDSAS (Lo et al., 2023) models can arguably be

considered to be pretrained LMs over logical forms, these models are thus far unable to be

applied to (multi-)sentence-level NLP tasks such as NLI, due to architectural limitations.

Aside from (likely) outperforming these models on the RELPRON dataset, GFoLDS’ largest

advantage over FDS/FDSAS is its ability to perform large-scale tasks with practical real-world

applications, as is most saliently demonstrated in Section 5.3.

The experiments in this chapter, however, reveal critical limitations of the GFoLDS model.

In particular, the model’s inability to account for CARGs and OOV items (see Chapter 4)

severely impeded its evaluation on the RELPRON (Section 5.2) and MegaVeridicality V2.1

(Section 5.4) datasets, and entirely precluded a direct comparison with FDS/FDSAS on the

former benchmark. Although the results of Section 5.3 suggest that this limitation may not

necessarily have a significant negative impact on all benchmarks, the inability to account for

CARGs and OOV items still restricts the applicability of the model in real-world use cases:

it is not able to provide an output for all possible inputs. In Chapter 7, I propose potential

162

future avenues to overcome this constraint.

Overall, this chapter demonstrates that the pretrained GFoLDS model is able to outperform

superficial models trained on the same amount of data on a variety of downstream tasks.

However, as discussed in Chapter 1, this model is only intended to serve as a proof-of-concept

of language models over logical forms: it still fails to match the performance of superficial

models pretrained on substantially more data. To make the case for language models over

logical forms—and inform future directions in this research program—it is necessary to

perform an in-depth analysis of the GFoLDS model in order to establish its scalability and

determine its limitations.

163

Chapter 6

GFoLDS: Model Analysis

In Chapter 5, I evaluated the GFoLDS model on a series of NLP benchmarks, and demon-

strated the utility and feasibility of language modeling over logical forms, and of GFoLDS in

particular. Critically, I showed that when pretrained on the same amount of data, GFoLDS

outperforms a comparably-sized, near-SoTA superficial model (i.e. BERT; Devlin et al., 2019)

on a wide range of tasks. In this chapter, I turn from the comparison of GFoLDS against

competing architectures to a fine-grained analysis of the model itself.

As discussed previously, one of the primary objectives of this dissertation is to demonstrate

the viability of language modeling over logical forms. While Chapter 5 certainly shows that

GFoLDS is a viable competitor to superficial models trained on similar amounts of data,

this model is still outperformed by superficial models that are pretrained on substantially

more data (i.e. the original BERT models of Chapter 5). In order to convincingly make

the case that language models over logical forms represent a plausible means to continue

the improvement of LLMs at a more sustainable rate of data consumption, it is crucial to

establish the scalability of this model: the degree to which we would expect the model’s

performance to scale if it were larger—i.e. contained more parameters—and pre-trained on

significantly more data. To that end, I dedicate Section 6.1 of this chapter to an analysis of

the scalability of GFoLDS, and focus on evaluating the extent to which the current model is

164

under- or over-trained.

Chapter 1 stated the Accelerated Learning Hypothesis (ALH) as follows: (i) linguistically-

informed LMs immediately begin learning more complex patterns, because the (aspects

of) linguistic knowledge incorporated into such models obviates the need to learn elemen-

tary linguistic phenomena, and (ii) this accelerated learning of complex patterns allows

linguistically-informed LMs to learn from less data than their superficial counterparts. Al-

though the results of the experiments of Chapter 5 strongly support part (ii) of this hypothesis,

they do not explain why language models over logical forms are able to learn useful represen-

tations with less data. To address this lack of evidence, Section 6.2 consists of a series of

interrelated experiments that are designed to directly probe the validity of part (i) of the

ALH.

As briefly discussed in Chapter 5, the experiments conducted therein revealed a major

weakness of the GFoLDS model: its inability to include CARGs and out-of-vocabulary items

(see Chapter 4) in its DMRS-derived input representations. In Section 6.3, I probe the model

to identify any remaining limitations or weaknesses in its architecture, with the goal of

informing the plans for future improvements to GFoLDS laid out in Chapter 7.

6.1 Scalability

As discussed above, this section is dedicated to an analysis of the scalability of the GFoLDS

model. In Section 6.1.2, I apply the techniques of Hoffmann et al.’s (2022) and Muennighoff

et al.’s (2024) research on the scalability of LLMs (discussed in Section 6.1.1) to GFoLDS,

with the goal of estimating the model’s propensity to scale with respect to parameter count

and pretraining dataset size. The results of this experiment indicate that GFoLDS is likely

scalable along both axes (see Section 6.1.3), both in terms of final pretraining loss and

performance on downstream tasks.

165

6.1.1 Background

Hoffmann et al. (2022) investigate the effect of model size (i.e. number of parameters) and

amount of pretraining data on the final pretraining cross-entropy loss of LLMs. The optimal

number of parameters and amount of data measured in number of tokens for a fixed compute

budget—expressed in terms of floating-point operations (FLOPs)—is given in Equation 6.1,

where Nopt denotes the optimal number of model parameters, Dopt the optimal number of

training tokens, C the compute budget, and L(N,D) the model’s final pretraining loss on D

tokens with N parameters.

(Nopt , Dopt) = argmin
(N,D) :FLOPs(N,D)=C

L(N,D) (6.1)

Evaluating over 400 language models trained on 70 million to 16 billion tokens, Hoffmann

et al. (2022) employ the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS;

Nocedal, 1980) algorithm to fit a model of LLM final pretraining loss as a function of N and

D, minimizing the Huber loss (Huber, 1964) between predicted and observed cross-entropy.

This model is given in Equation 6.2, where E, A, B, α, and β are learned constants1.

L(N,D) ≈ L̂(N,D) = E +
A

Nα
+

B

Dβ
(6.2)

This model predicts that Nopt , Dopt ∝
√
6ND: critically, this implies that the optimal

number of model parameters scales proportionally to the number of training tokens. This

suggests that the vast majority of current language models are overparameterized (i.e. too

large) for the amount of data on which they are trained. To illustrate this point, the authors

train the Chinchilla language model with one-quarter of the parameters (70 billion) as Gopher

(280 billion parameters; Rae et al., 2021)—but with the same compute budget: Chinchilla is

pretrained on four times as many tokens as Gopher (1.4 trillion vs. 300 billion). The smaller

Chinchilla model outperforms Gopher on all benchmarks on which Hoffmann et al. (2022)
1E = 1.69, A = 406.4, B = 410.7, α = 0.34, β = 0.28

166

evaluate the two models.

However, Hoffmann et al. (2022) only consider unique training data—i.e. pretraining a

language model for a single epoch. Muennighoff et al. (2024) extend Hoffmann et al.’s (2022)

experiments to the case of repeated training data: pretraining the model for multiple epochs

on the same dataset. The authors fit an analogous loss-prediction function to that given in

Equation 6.2 (Equation 6.3a), L̂(r)(N,D), which estimates the final loss for a language model

with N parameters trained on D tokens for r repetitions (i.e. epochs).

L(r)(N,D) ≈ L̂(r)(N,D) = E +
A

N̂α
+

B

D̂β
(6.3a)

D̂ = UD + UDR
∗
D(1− e−r/R∗

D) (6.3b)

N̂ = UN + UNR
∗
N(1− e−RN/R∗

N) (6.3c)

UN = min{N,Nopt(UD)} (6.3d)

RN =
N

UN

− 1 (6.3e)

Where UD = D denotes the number of unique tokens (i.e. the amount of tokens in a single

epoch), Nopt(UD) is estimated as in Hoffmann et al. (2022) (see Equations 6.1 and 6.2), and E,

A, B, α, β, R∗
D, and R∗

N are learned constants2 that are estimated via minimization of Huber

loss with the L-BFGS algorithm (as in Hoffmann et al., 2022). This model suggests that

pretraining LLMs for up to four epochs results in a negligible difference in loss in comparison

to pretraining on 4UD tokens for a single epoch, but additional epochs yield diminishing

returns—and can eventually result in overfitting.

Of particular interest to the current discussion is Muennighoff et al.’s (2024) exploration

of the impact of overparameterization in the setting of repeated data, which is incorporated

into their model via the term RN in Equation 6.3e. Specifically, their model predicts that

an overparameterized model will outperform a model with fewer parameters, given the
2E = 1.88, A = 523.22, B = 1480.30, α = 0.35, β = 0.35, R∗

D = 15.39, R∗
N = 5.31

167

same amount of pretraining tokens and epochs, albeit with rapidly diminishing returns (see

Equation 6.3c).

6.1.2 Experimental Setup

In order to determine the degree to which GFoLDS (as defined and pretrained in Chapter 4)

is under- or over-parameterized—and therefore, by the scaling laws established in Hoffmann

et al. (2022) and Muennighoff et al. (2024), over-/under-trained—I set out to establish the

effect of pretraining tokens on the model’s final pretraining loss.

However, as loss is not an exact predictor of a given model’s downstream performance

(Shin et al., 2022; Tay et al., 2022; Xia et al., 2023), I follow Hoffmann et al. (2022) and

evaluate the impact of pretraining tokens on a validation task as well. I used the RELPRON

dataset (Rimell et al., 2016) for this purpose, as it is the only task in Chapter 5 that does not

depend on factors external to the model: SNLI (Bowman et al., 2015) and MegaVeridicality

V2.1 (White et al., 2018) introduce potential confounding factors in the form of the fine-

tuning procedure and classification head, while the McRae et al. (2005) property inference

task depends not only on the language model, but also on the performance of the ModAds

(Talukdar and Crammer, 2009) label-propagation algorithm.

In this experiment, I pretrained five additional GFoLDS models on 50%, 25%, 12.5%,

6.25%, and 3.125% of the pretraining data used when originally pretraining the model in

Chapter 4. I randomly-selected exactly half of the data of the preceding iteration to pretrain

each model: the 50% run was pretrained on exactly half of the dataset used in Chapter 4,

the 25% run on exactly half of that half, and so on—following Muennighoff et al. (2024), I

ensured that the iterations pretrained on less data always use a subset of the dataset used

in those with more data. All models used an identical architectural configuration—that of

the GFoLDS model employed in Chapters 4 and 5—as the focus of this experiment was the

effect of training tokens with a fixed parameter count. Aside from the differing number of

pretraining tokens, all models were pretrained using the same procedure and hyperparameters

168

as employed in Chapter 4.

6.1.3 Results

Figure 6.1: Final pretraining cross-entropy loss values and RELPRON MAP scores (No-
UNK/NE test split; see Chapter 5) for each of the six training runs. The 100% run denotes
the GFoLDS model pretrained in Chapter 4.

Figure 6.1 shows that final pretraining loss consistently decreases with the number of

pretraining tokens from 3.125% to 50% of the data. After this point, however, the final loss

value plateaus: the 50% run (1.3232) actually finishes with a lower cross-entropy loss than

the actual (i.e. 100%) run (1.3331)—although this slight difference is likely explained by noise

introduced by the random initialization of the models’ parameters. This is to say that we

should treat the model’s loss with 50% of the pretraining data as roughly equivalent to its

loss with 100% of the data.

Note that the term D in Equation 6.3 denotes the number of pretraining tokens. This

metric is likely not a perfect predictor for GFoLDS: recall from Chapter 4 that the model

contains separate projection layers for each DMRS edge label type. The model therefore

receives training signal not only from the node labels (i.e. tokens), but also from the edge

labels. For example, an input graph with six tokens and five edges will update fewer model

parameters than a graph with six tokens and ten edges.

It is beyond the scope of this dissertation to establish exact scaling laws for GFoLDS and

determine the graph-based analogue to the term D in Equation 6.3. However, it is clear that

169

such a D value scales (more or less) linearly with the number of graphs in the pretraining

dataset: as with a superficial model, D can be expressed as the sum of the amounts of data

(regardless of how it is quantified) contributed by each individual input graph (respectively,

sequence) in the dataset.

It is therefore reasonable to assume that D′ ≈ D/2, where D denotes the dataset for the

100% run, and D′ that of the 50% run. We may express the relationship between the 50%

run loss and the 100% run loss in the notation introduced in Section 6.1.1, while leaving the

exact definition of D to future work: L(4)(N,D) ≈ L(4)(N,D/2). Recall from Equation 6.3a

that the term E is a constant, and so can be ignored. We are then left with the following

(approximate) equality in Equation 6.4a.

A

N̂α
1

+
B

D̂β
1

≈ A

N̂α
2

+
B

D̂β
2

(6.4a)

D̂1 = UD + UDR
∗
D(1− e−4/R∗

D) (6.4b)

D̂2 ≈ (UD/2) + (UD/2)R
∗
D(1− e−4/R∗

D) (6.4c)

N̂1 = U
(1)
N + U

(1)
N R∗

N(1− e−R
(1)
N /R∗

N) (6.4d)

N̂2 = U
(2)
N + U

(2)
N R∗

N(1− e−R
(2)
N /R∗

N) (6.4e)

U
(1)
N = min{N,Nopt(UD)} (6.4f)

U
(2)
N ≈ min{N,Nopt(UD/2)} (6.4g)

R
(k)
N =

N

U
(k)
N

− 1 (6.4h)

Where the left-hand expression in Equation 6.4a corresponds to the 100% run (L̂(4)(N,D)),

and the right-hand expression corresponds to the 50% run (L̂(4)(N,D/2)). Note that D̂2 ≈

D̂1/2 (Equation 6.5).

170

D̂2 ≈
UD

2
+
UD

2
R∗

D(1− e−4/R∗
D)

=
UD + UDR

∗
D(1− e−4/R∗

D)

2
=
D̂1

2

(6.5)

Given the vast architectural and modal differences between GFoLDS and superficial

transformer models, I do not assume that the coefficients E, A, B, α, β, R∗
D, and R∗

N fitted in

Muennighoff et al. (2024) are identical for GFoLDS. Moreover, as stated above, it is beyond

the scope of this dissertation to establish exact scaling laws for this model. However, from the

fact that final loss decreases as pretraining data increases from the 3.125% to the 50% runs,

we know that the coefficients B and β in Equation 6.4 must be positive: this—in conjunction

with the (approximate) equality in Equation 6.5—means that it cannot be the case that

B/D̂β
1 > B/D̂β

2 .

Assume for the sake of argument that B/D̂β
1 ≪ B/D̂β

2 : given the equality in Equation

6.4a, it must then be the case that A/N̂α
1 − A/N̂α

2 ≈ B/D̂β
2 − B/D̂

β
1 , and therefore that

A/N̂α
2 ≪ A/N̂α

1 .

Assume further that the model is underparameterized at 100% of the data—i.e. that

N < Nopt(UD): then U
(1)
N = min{N,Nopt(UD)} = N and R

(1)
N = (N/U

(1)
N) − 1 = 0, which

implies that N̂1 = U
(1)
N + U

(1)
N (1− 1) = U

(1)
N = N (see Equation 6.4d). As the terms A and

α are constants in Equation 6.3a—and therefore in Equation 6.4a—we may reduce to the

inequality expressed in Equation 6.6, where the last logical equivalence is by definition of

R
(2)
N (see Equation 6.4h).

171

N̂−α
1 ≫ N̂−α

2 ↔ N̂1 ≪ N̂2

↔ N ≪ U
(2)
N + U

(2)
N R∗

N(1− e−R
(2)
N /R∗

N)

↔ N − U (2)
N

U
(2)
N

≪ R∗
N(1− e−R

(2)
N /R∗

N)

↔ N

U
(2)
N

− 1≪ R∗
N(1− e−R

(2)
N /R∗

N)

↔ R
(2)
N /R∗

N ≪ 1− e−R
(2)
N /R∗

N

(6.6)

But this is impossible: by Bernoulli’s inequality, 1 + x ≤ ex for all x. This implies that

x ≤ ex − 1, which in turn implies −x ≤ 1 − ex, which then implies x > 1 − e−x. As it

therefore cannot be the case that R(2)
N /R∗

N < 1− e−R
(2)
N /R∗

N , we know that the model cannot

be underparameterized if B/D̂β
1 ≪ B/D̂β

2 .

Now assume that the model is either over- or well-parameterized at 100% of the data

(i.e. that N ≥ Nopt(UD)): then U
(1)
N = min{N,Nopt(UD)} = Nopt(UD). It is reasonable

to assume that the model’s optimal number of parameters scales monotonically with the

amount of pretraining data—i.e. that Nopt(UD/2) < Nopt(UD)—which implies that U (2)
N =

min{N,Nopt(UD/2)} = Nopt(UD/2) < Nopt(UD) = U
(1)
N . With a fixed number of parameters

N , N̂ (Equations 6.3c, 6.4d-e) is a monotonic function of UN by construction (Muennighoff

et al., 2024), so we have U (1)
N > U

(2)
N → N̂1 > N̂2.

But this implies that A/N̂α
1 < A/N̂α

2 . This—along with the assumption that B/D̂β
1 ≪

B/D̂β
2—contradicts the observed result that L(4)(N,D) ≈ L(4)(N,D/2), and so we know that

the model cannot be well- or over-parameterized if B/D̂β
1 ≪ B/D̂β

2 .

Given that it cannot be the case that the model of the 100% run is under-, well-, or

over-parameterized if B/D̂β
1 ≪ B/D̂β

2 (and that it must be one of the three), it therefore

cannot be the case that B/D̂β
1 ≪ B/D̂β

2 . As argued above, the coefficients B and β must

be positive, so it also cannot be the case that B/D̂β
1 ≫ B/D̂β

2 : we must then conclude that

B/D̂β
1 ≈ B/D̂β

2 . As D̂1 ≈ 2D̂2 (see Equation 6.5), we know that B/D̂β
1 ≈ (B/D̂β

2)/2
β, and

172

that 2β > 1, as β must be positive. It must therefore be the case that B/D̂β
1 ≈ 0, which

indicates that additional pretraining data will not serve to further decrease the model’s final

pretraining loss.

Given that B/D̂β
1 ≈ B/D̂β

2 , the equality in Equation 6.4a implies that A/N̂α
1 ≈ A/N̂α

2 ,

which in turn implies that N̂1 ≈ N̂2. If GFoLDS were over- or well-parameterized at 100%

of the data, then the monotonicity of N̂ would imply that N̂1 > N̂2 (as discussed above),

contradicting the conclusion that N̂1 ≈ N̂2.

On the other hand, replacing the inequalities in Equation 6.6 with (approximate) equalities

yields R(2)
N /R∗

N ≈ 1 − e−R
(2)
N /R∗

N : note that the only value of x for which x = 1 − e−x is

0. If GFoLDS is underparameterized at the 50% run, then U
(2)
N = min{N,Nopt(UD/2)} =

N , which implies that R(2)
N = 0, which in turn implies that R(2)

N /R∗
N = 0. Given that

Nopt(UD) is (likely) greater than Nopt(UD/2), it is also the case that R(1)
N /R∗

N = 0 and

U
(1)
N = min{N,Nopt(UD)} = N = U

(2)
N : this implies that A/N̂α

1 = A/N̂α
2 (see Equations 6.4d

and 6.4e), which is congruent with the conclusion that N̂1 ≈ N̂2.

Therefore, we may conclude that it is most likely the case that GFoLDS is underparame-

terized not only for the full pretraining dataset employed in Chapter 4, but also for a dataset

half that size. This suggests that scaling to a larger model would likely result in increased

model performance, even with the same amount of pretraining data.

Furthermore, recall that final model loss is not perfectly correlated with downstream

model performance. Despite the plateau in cross-entropy loss observed in Figure 6.1, we

observe improvement of +0.082 in MAP on the RELPRON validation task from the 50%

(MAP = 0.569) to the 100% (MAP = 0.651) run. This is in fact higher than the +0.062

increase in MAP score from the 25% (MAP = 0.507) to the 50% run.

The results of this experiment lead to the conclusion that the GFoLDS model is likely

scalable in terms of both model size and pretraining data. The application of the Muennighoff

et al. (2024) scaling laws to GFoLDS indicates that increasing the model’s parameter count

will likely lead to decreased final pretraining loss—assuming that the scaling laws hold for

173

GFoLDS—while the model’s run-over-run performance on the RELPRON test set suggests

that increased pretraining dataset size will most likely result in corresponding increases in

the GFoLDS model’s downstream performance.

6.2 The Accelerated Learning Hypothesis

As mentioned above, this section is dedicated to an investigation of the validity of part (i) of

the Accelerated Learning Hypothesis (ALH) of Chapter 1, which posits that the (aspects

of) linguistic knowledge incorporated into linguistically-informed LMs obviates the need to

learn elementary linguistic phenomena, allowing them to immediately begin learning more

complex patterns. In the context of the current discussion, it is critical to note that there

is a temporal aspect to this part of the hypothesis: in order to validate the claim that

linguistically-informed LMs immediately begin to learn complex patterns, we must probe

the model at regular intervals throughout its pretraining procedure, in order to locate the

point(s) at which it begins to learn those patterns.

Additionally, this part of the ALH can be broken down into two distinct claims: (i) that

the aspects of linguistic knowledge incorporated into linguistically-informed LMs obviate the

need to learn elementary linguistic phenomena; and (ii) that this enables such models to then

immediately begin learning more complex patterns. I therefore divide the experiment in this

section into two parts, which respectively probe the model’s knowledge of elementary and

complex linguistic phenomena.

While this chapter is devoted to analyses of GFoLDS itself—rather than a comparison

to competing models—part (ii) of the ALH states that that language models over logical

forms can learn useful representations with less data than their superficial counterparts:

this necessitates the comparison of GFoLDS to a superficial model in this section. In these

experiments, I specifically compare GFoLDS to the BERT comparison models employed in

Chapter 5. There are two main advantages to using these particular models as baselines

174

for comparison: first, I pretrained these models myself, and therefore have access to the

model weights at various stages of the pretraining process. Furthermore, these models were

pretrained on the same base data as GFoLDS, reducing the risk of confounding factors that

may arise from distributional differences in the models’ respective pretraining corpora.

6.2.1 Experimental Setup

This experiment revolves around four probing tasks, consisting of two sets of two probes

each, that are respectively designed to evaluate the models’ knowledge of elementary and

complex linguistic phenomena. I evaluate GFoLDS and the BERT comparison models on

each of the four tasks at twenty evenly-spaced intervals per epoch, for a total of eighty points

of comparison.

Under the assumption that part (i) of the ALH holds, we should expect to see GFoLDS

outperform the BERT comparison models on the complex tasks at each stage of the pre-

training process, as—according to this hypothesis—GFoLDS is able to learn complex patterns

faster than BERT. On the elementary tasks, we still expect GFoLDS to outperform BERT,

but also predict that the GFoLDS model’s performance will not improve significantly across

pre-training stages on the elementary probes, while BERT’s performance on these tasks

steadily increases: part (i) of the ALH asserts that—by its very nature—a linguistically-

informed LM is already equipped with elementary linguistic knowledge, and therefore its

performance at the first pre-training stage should be near (or above) that of a superficial

model such as BERT at the last pre-training stage. In other words, assuming that part (i) of

the ALH holds, the GFoLDS model’s performance on the elementary probing tasks shouldn’t

improve significantly across pre-training stages, because there shouldn’t be any room for the

model to improve—it should already be near peak performance from the start.

The complex probes that I employ in this experiment are simply the MegaVeridicality

V2.1 (White et al., 2018) factuality and RELPRON (Rimell et al., 2016) relative-clause

composition tasks used in Chapter 5, with their respective evaluation metrics. The McRae

175

et al. (2005) property inference dataset was not suitable to use as a complex probe, as none

of the fully-pretrained GFoLDS and BERT-comparison models performed particularly well

on this task, and so it would not serve as an effective metric of improvement over time.

Conversely, while SNLI would likely serve as an effective benchmark, the fine-tuning times

on this dataset are prohibitively long: on this dataset, GFoLDS and BERTbase each take

roughly five hours to train on an NVIDIA RTX 3080 Ti GPU3, and BERTlarge takes roughly

15 hours. Given that I evaluated each model at 80 points during pretraining, fine-tuning

each of the GFoLDS and BERTbase checkpoints on SNLI would require ∼800 hours: along

with the ∼1200 required for BERTlarge, fine-tuning all three models on SNLI 80 times would

necessitate ∼2000 hours—over 83 days.

6.2.1.1 Elementary Probes

As discussed above, I created two probing tasks designed to evaluate the models’ knowledge of

elementary linguistic phenomena. The first task, POS-prediction, evaluates the LMs’ ability

to model the distribution of parts-of-speech within a sentence: this is a commonly-employed

probing task used to assess the elementary linguistic competence of language models (Waldis

et al., 2024).

For this task, I evaluated the models on 200 sentences drawn from English Wikipedia,

that were not used in the models’ pretraining data. I first parsed each sentence using the

ACE/ERG DMRS parser employed in Chapters 4 and 5, which automatically labels the

part-of-speech of each predicate in the DMRS representation of a sentence. I then randomly

selected a single word to mask from each parsed sentence—subject to the condition that

the selected word must be mapped to a single token by the BERT tokenizer, in order to

facilitate the evaluation of the BERT comparison models—and recorded the part-of-speech

of the selected word. This resulted in a dataset consisting of 58 masked-quantifier, 28
3While training times would likely be significantly faster on an H100 or A100 on UB’s CCR servers (which

I used for pretraining in Chapter 4), I am using the free tier and therefore face substantial queue times for
these training runs. This is compounded by CCR’s “fair-share” policy, which further extends queue times as
a function of the user’s resource usage over the last 30 days.

176

Type Quantifiers
SG another, either, neither, that, this, every, a(n), each
PL these, certain, most, those, all, such, both
BOTH some, the, any, enough, no, which

Table 6.1: Quantifier types—along with a list of the quantifiers belonging to each type—used
in the quantifier-agreement probe.

masked-preposition, 33 masked-verb, 63 masked-noun, and 18 masked-adjective sentences.

I extracted the models’ probability distributions over the masked word of each sentence,

and recorded their precision at ten with respect to the masked word’s part-of-speech. For

example, if the masked word was a noun, and the model’s top ten most-likely predictions

were all nouns, then the model received a perfect score (1.0) for that example. If nine of the

top ten predictions were nouns, the model received a score of 0.9 for that example, and so on.

Determining the part-of-speech for each prediction of the GFoLDS model was trivial:

DMRS predicates include part-of-speech tags, so I simply checked the tag of each predicted

predicate. The BERT models, however, necessitated the use of the NLTK POS tagger4. For

each sentence s, and each of the model’s top-ten predicted tokens w for s, I created a new

sentence sw by replacing the masked word of s with the prediction w, and ran the NLTK

POS tagger over sw to obtain the tag for w. Note that, while the NTLK POS tagger is not

perfect, it does achieve 95+% accuracy on English-language data (Jacobsen, Sørensen, and

Derczynski, 2021), and therefore is sufficiently robust to yield an estimate of the model’s

performance.

I chose to use (bounded) precision as the evaluation metric for this task because of the

large amounts of positive examples for each class (especially nouns, verbs, and adjectives),

which precluded the calculation of metrics that incorporate false negatives (e.g. recall and

F1). I recorded each model’s mean precision across all 200 sentences as its final score for this

task.

The second elementary probe, quantifier-agreement, evaluates the models’ knowledge of
4https://www.nltk.org/api/nltk.tag.pos_tag.html

177

https://www.nltk.org/api/nltk.tag.pos_tag.html

quantifier number agreement—i.e. whether a quantifier restricts a singular or plural noun

(or both)—across 179 sentences drawn from English Wikipedia (as in the POS-prediction

probe described above, none of these sentences were used to pretrain the models). Although

less common than POS prediction, quantifier agreement tasks have also been employed as a

metric of language models’ elementary linguistic competence (see e.g. Huebner et al., 2021;

Waldis et al., 2024).

I first parsed each sentence with the ACE/ERG parser, which explicitly labels the number

of each noun: this allowed the automatic extraction of the number of the noun in the

restriction of a given quantifier. I then randomly selected a single quantifier from each

sentence to mask, and recorded the number of the noun in the quantifier’s restriction.

I sorted all of the quantifiers into one of three categories/types (see Table 6.1): singular,

consisting of quantifiers which can only restrict singular nouns; plural, which can only restrict

plural nouns; and both, which can restrict either kind of noun. As in the POS-prediction

task above, I extracted the models’ probability distributions over the masked quantifier of

each sentence, in order to compute their precision at k. Here, k varied as a function of the

number of the masked quantifier’s restriction: k = 14 for the quantifiers that restrict singular

nouns—eight singular-type quantifiers, along with the six both-type quantifiers—and k = 13

for the plural-noun-restricting quantifiers. Note that the both-type quantifiers were used

only for evaluation: the type of the masked quantifiers was recorded only as singular or

plural—all nouns are either singular or plural, and the target type was determined by the

number assigned by the ACE/ERG parser to the noun in the quantifier’s restriction.

When computing precision for this task, all non-quantifier words in the models’ top-k

predictions were treated as false positives, while both-type quantifiers in the top k were treated

as true positives, regardless of the target type (singular or plural). As in the POS-prediction

task above, I recorded each model’s mean precision across all 179 sentences as its final score

for this task.

178

6.2.2 Results

Figure 6.2: Precision scores across the 80 evenly-spaced training snapshots (20 per epoch) for
GFoLDS and the BERT comparison models on the two elementary tasks.

The results of the two elementary probing tasks described in Section 6.2.1.1 are shown in

Figure 6.2. The results for all three models conform almost exactly to their predicted behavior

discussed in Section 6.2.1: the performance of GFoLDS on these probes remains relatively

constant throughout pretraining—because the model is already near peak performance from

the beginning—while that of the BERT comparison models (more or less) steadily increases.

Additionally, note that the BERT models do not begin to improve on these tasks until roughly

halfway through the first pretraining epoch.

These results constitute strong evidence towards the first half of part (i) of the Accelerated

Learning Hypothesis: namely, that the aspects of linguistic knowledge incorporated into

linguistically-informed LMs obviates the need to learn elementary linguistic phenomena. It is

clear from these experiments that GFoLDS is able to model these elementary phenomena

from the onset, and retains this ability throughout pretraining.

It now remains to evaluate the second half of part (i) of the ALH: linguistically-informed

LMs’ built-in knowledge of elementary linguistic phenomena enables these models to then

immediately begin learning more complex patterns. To that end, I first examined the

performance of these models on the RELPRON test set, which is given in Figure 6.3. Again,

these results resemble almost exactly the behavior predicted by the ALH: GFoLDS begins

improving immediately, while the performance of BERT-Cbase does not begin to meaningfully

increase until the latter half of the first epoch (and BERT-Clarge does not improve substantially

179

Figure 6.3: MAP scores on the RELPRON test set across the 80 training snapshots for
GFoLDS and the BERT comparison models.

at all)—and at a much lower rate than that of GFoLDS.

The results of the factuality experiment (see Figure 6.4) are not nearly as straightforward:

the accuracy of all three models on the MegaVeridicality V2.1 dataset is rather erratic

throughout pretraining. While this task is clearly not as effective as RELPRON or the

elementary probes as a metric of improvement over time, the other tasks introduced in

Chapter 5 (property inference and NLI) are not suitable in that role, as discussed in Section

6.2.1.

Figure 6.4: Accuracy on the MegaVeridicality V2.1 factuality dataset (test set) across training
snapshots for GFoLDS and the BERT comparison models.

Although this data is much noisier than that of the previous experiments in this section,

we can still extract useful information with respect to the ALH: it appears that across the

80 pretraining snapshots, the central tendency of GFoLDS’s performance was higher than

180

that of the BERT comparison models. To formalize this intuition, I smoothed the data in

Figure 6.4 with a 1-dimensional Gaussian filter (σ = 3), which measures its cross-correlation

with the Gaussian distribution with a mean of zero and standard deviation of σ (Young

and Van Vliet, 1995); Gaussian filters are commonly used in image and signal processing to

smooth and minimize rise/fall time in noisy data (Mafi et al., 2019).

Figure 6.5: Results of Figure 6.4, smoothed via Gaussian filter (σ = 3.0).

The Gaussian-filtered MegaVeridicality V2.1 data shown in Figure 6.5 provides a much

clearer picture than Figure 6.4. While the evidence provided by this experiment is not nearly

as strong as that of the RELPRON experiment discussed above, these results do still lend

support to the ALH. Although the smoothed performance of GFoLDS actually decreases

across the majority of the first epoch, this decrease spans less than two percentage points, and

the model’s performance improves thereafter—albeit with drops at the ends of the second and

third epochs. Furthermore, the Gaussian-filtered values for GFoLDS are almost constantly

above those of the BERT comparison models, with the exception of a brief period near the

end of the second epoch. We again observe the performance of the BERT comparison models

starting from a lower value than that of GFoLDS, and (more or less) steadily increasing.

Note that the performance of the BERT comparison models remains relatively static until

roughly halfway through the first epoch (this is more clear in Figure 6.4): the same point

at which they begin to improve on the elementary tasks (see Figure 6.2). We observe the

same pattern with BERT-Cbase for the RELPRON experiment in Figure 6.3 (the performance

181

of BERT-Clarge remains effectively constant throughout). While this temporal relationship

between complex and elementary task performance for the BERT-C models obviously does

not demonstrate causation, it does suggest a relationship between model performance on the

elementary and complex tasks.

Overall, the results of the elementary and complex probing experiments constitute strong

evidence in support of part (i) of the Accelerated Learning Hypothesis. The elementary

probes (Figure 6.2) clearly demonstrate that GFoLDS is able to learn elementary linguistic

phenomena far more rapidly than the BERT comparison models, and the results of the

complex tasks—in particular, the RELPRON experiment (Figure 6.3)—suggest that this

does in fact correspond to faster learning of more complex patterns.

6.3 Limitations and Weaknesses

In this section, I probe the GFoLDS model’s ability to inductively learn the law of the

excluded middle (Section 6.3.1), replicating the experiment conducted in Chapter 2. I find

that, as was the case with the superficial models in that experiment, GFoLDS is unable to

inductively learn to cancel double negation with respect to NLI tasks. However, unlike the

superficial LMs, I show in Section 6.3.2 that GFoLDS’ poor performance on this task is likely

due to a proven architectural failing (see Theorem 2), rather than the model’s inability to

learn the logical role of negation. In Section 6.3.3, I demonstrate that this architectural

weakness also inhibits the model’s ability to encode the global positions of nodes within a

graph, likely hindering its performance on multi-sentence tasks such as NLI.

Fortunately, all of the limitations uncovered in this section can be traced back to the

same root cause—that uncovered by Theorem 2—and I propose a potential solution to this

problem in Chapter 7.

182

6.3.1 Double-Negation Cancellation

In Chapter 2, I investigated the ability of near-SoTA superficial transformer NLI models to

inductively learn the law of the excluded middle (LEM)—i.e. double-negation cancellation.

Specifically, I probed these models’ capacity to generalize LEM to lengths of repeated negation

longer than what was seen during fine-tuning. Here, I replicate those experiments with the

GFoLDS model on the SNLI (Bowman et al., 2015) dataset. For the sake of convenience, I

provide a brief overview of the experimental setup below; a more comprehensive description

is located in Chapter 2.

6.3.1.1 Task Description

For each 1 ≤ n ≤ 5, I constructed training sets D≤n by randomly selecting 9,999 examples

from the SNLI train split (3,333 examples from each class: entailment, contradiction, and

neutral). For each 1 ≤ k ≤ n, 1/n of the examples in each class in D≤n are depth-k negated by

prepending the trigger prefix TNT = “it is not true that” to the original hypothesis sentence k

times (i.e. by converting (P,H) to (P, (TNT)
kH)). For example, in D≤5, 1/5 of the examples

in each class are depth-5 negated, 1/5 are depth-4 negated, 1/5 are depth-3 negated, etc.

External negation changes the examples’ class labels in a predictable way: after odd-depth

negation—i.e. an odd number of repeated external negation prefixes—an example that was

originally entailment becomes contradiction, and vice-versa, while neutral examples do not

change class labels. Even-depth negation, on the other hand, does not change the examples’

class labels, as double negation cancels out. A more detailed discussion of this phenomenon

is given in Chapter 2.

Then, for each 1 ≤ m ≤ 8, I constructed the depth-m test set Dm
NT . The test sets are

constructed in a similar manner to the train sets D≤n, the difference being that the examples

are only depth-m negated in Dm
NT—whereas 1/n of the examples in D≤n are depth-k negated

for each 1 ≤ k ≤ n.

After constructing the train and test sets, I conducted 30 training runs, inoculating (see

183

Liu, Schwartz, and Smith, 2019) each of the six models on each of the five training sets D≤n

(1 ≤ n ≤ 5). After fine tuning each model on D≤n, I then evaluated the models’ performance

on Dm
NT for each n < m ≤ 8, in order to determine their ability to generalize beyond what

they had seen during inoculation/fine-tuning.

I found that of the six models, only the three RoBERTa models were able to generalize

up to depth-8 after being inoculated on D≤5. I then found that, after depth-≤ 5 inoculation

on TNT , the RoBERTa models were unable to generalize this knowledge to the highly similar

prefix “it is false that”. A more comprehensive overview of the findings from these experiments

is located in Chapter 2.

To replicate these experiment(s) with GFoLDS, I used the GFoLDS model fine-tuned on

the entire SNLI dataset in Chapter 5. I did not replicate Experiment 2 of Chapter 2—i.e.

generalization to “it is false that” (see Section 2.5)—with GFoLDS, because both “it is not

true that” and “it is false that” map to the same representation in logical form (neg).

6.3.1.2 Results

The results of this experiment (Table 6.2) show that GFoLDS is unable to inductively learn

double-negation cancellation with respect to NLI tasks. As with the superficial models

evaluated in Chapter 2, these results appear to seriously call into question the ability of

GFoLDS to learn to reason logically, at least when fine-tuned on NLI datasets.

Depth-m Test B/I Inoc-1 Inoc-2 Inoc-3 Inoc-4 Inoc-5
1 0.63 0.89 — — — —
2 0.30 0.35 0.88 — — —
3 0.58 0.61 0.31 0.87 — —
4 0.38 0.49 0.88 0.30 0.87 —
5 0.55 0.53 0.31 0.88 0.31 0.62
6 0.48 0.49 0.88 0.30 0.88 0.48
7 0.47 0.48 0.30 0.87 0.30 0.58

Table 6.2: Accuracy for the GFoLDS model on depth-(m ≥ n) external negation (Dm
NT) after

depth-≤ n inoculation (1 ≤ n ≤ 5) on D≤n (column Inoc-n). Column B/I denotes the model
before inoculation (i.e. the GFoLDS model fine-tuned on SNLI in Chapter 5).

184

Depth-m Test GFoLDS Mean Median Max Min
1 0.63 0.53 0.52 0.69 0.39
2 0.30 0.72 0.76 0.79 0.56
3 0.58 0.36 0.35 0.40 0.32
4 0.38 0.84 0.84 0.85 0.82
5 0.55 0.32 0.32 0.34 0.30
6 0.48 0.86 0.86 0.89 0.83
7 0.47 0.31 0.32 0.36 0.28

Table 6.3: Non-inoculated accuracy of the GFoLDS model on the depth-m external-negation
test sets (Dm

NT) for 1 ≤ m ≤ 7, compared to the mean, median, maximum, and minimum
accuracy of the six superficial models evaluated in Chapter 2.

Depth-m Test GFoLDS Mean Median Max Min
1 0.78 0.60 0.59 0.78 0.43
2 0.36 0.82 0.85 0.91 0.62
3 0.71 0.40 0.39 0.46 0.37
4 0.47 0.94 0.95 0.95 0.92
5 0.67 0.36 0.36 0.39 0.33
6 0.59 0.97 0.97 1.0 0.94
7 0.58 0.36 0.36 0.41 0.31

Table 6.4: Table 6.3, viewed as a proportion of each respective model’s accuracy on the
original SNLI development split.

However, note that the non-inoculated GFoLDS model—i.e. that fine-tuned on the stan-

dard SNLI dataset in Chapter 5—exhibits a pattern that is almost entirely opposite to that

displayed by the superficial language models of Chapter 2 (see Table 6.3). Specifically, for

the superficial models, we observe high accuracy (∼80%) on the even-depth test sets, and low

accuracy on the odd-depth test sets. GFoLDS, on the other hand, exhibits higher accuracy on

the odd-depth test sets than on the even-depth splits. When the models’ test-set performance

is viewed as a proportion of their accuracy on the original SNLI development split—measuring

the degree to which repeated external negation degrades their performance—the contrast

between the pattern displayed by GFoLDS and that of the superficial models is far more

pronounced (see Table 6.4).

In Chapter 2, I argued that the pattern displayed by the superficial models in Table

6.3 suggests that, before inoculation, they had learned to essentially entirely ignore the

185

external negation prefixes and treat them as distractors—despite fine-tuning on SNLI, which

is (ostensibly) a logical-reasoning task: depth-m negation does not alter an example’s class

label for even values of m, and so an LM treating the prefix as a distractor will retain high

accuracy on those examples, without any need to learn to model negation.

Following this same line of reasoning, if a model had learned to model negation—but not

double-negation cancellation—we would expect it to flip the entailment and contradiction

class labels on both the odd-depth and even-depth test sets, resulting in higher accuracy on

the odd-depth test sets than on the even-depth splits: (more or less) exactly what we observe

with GFoLDS. This suggests that, before inoculation, GFoLDS may have more effectively

learned the logical role of negation than its superficial counterparts—that the model did not

learn to model double-negation cancellation is likely due to the sparsity of such constructions

in its pretraining data and the SNLI dataset: double negation is exceedingly rare in real-world

data (Larrivée, 2016).

6.3.2 Mod-2 Counting

The findings of Section 6.3.1 are rather puzzling: the results in Tables 6.3 and 6.4 suggest

that GFoLDS had more effectively learned the logical role of negation before inoculation

than its superficial counterparts, which raises the question as to why GFoLDS is unable to

inductively learn to cancel double-negation (see Table 6.2).

6.3.2.1 Theoretical Results

In Theorem 1 of Chapter 2, I proved that superficial transformer encoders are theoretically

able to model cancellation of repeated external negation, suggesting that their empirically

observed inability to do so results from the (lack of) structure of purely textual data and/or

their training procedures. However, as a graph transformer (Wu et al., 2021), GFoLDS does

not satisfy the assumptions of Theorem 1, and so that theorem cannot be expected to hold

for this model.

186

In Theorem 2 below, I prove that GFoLDS has a critical failing in the architecture of its

positional encoding module that renders it unable to distinguish between the embeddings

of nodes in the middle of a chain of repeated instances of the same token longer than twice

the number of step-wise aggregation (SWA; described in detail in Section 4.2.2 of Chapter 4)

layers in the model—such as the repeated external negation prefix used in the experiment in

Section 6.3.1. This suggests that its inability to cancel double negation exhibited in Section

6.3.1 is in fact due to an architectural limitation.

Theorem 2. Given a GFoLDS model (as defined in Chapter 4) M with n SWA layers and

an input graph G, let M(G)i denote the embedding that M assigns to the ith node xi of G.

Suppose that G contains a path p = x1
ℓ−→ . . .

ℓ−→ xk of length k such that all nodes (and all

edges) in p have the same label (respectively), and that for all 1 < i < k, xi has no incoming

or outgoing edges not in p. Then:

i. for all 1 ≤ i ≤ n, and all 1 ≤ j ≤ k such that i ̸= j: M(G)i ̸=M(G)j

ii. for all k − n ≤ i ≤ k, and all 1 ≤ j ≤ k such that i ̸= j: M(G)i ̸=M(G)j

iii. for all n < i, j < k − n: M(G)i =M(G)j

Proof. Section 6.5.

A critical consequence of Theorem 2 is that, given a length-(k−1) path p = x1
ℓ−→ . . .

ℓ−→ xk

consisting of identical node and argument labels, the GFoLDS model requires at least ⌊k/2⌋

SWA layers in order to assign a unique embedding to each node in p. The external negation

introduced in the double-negation cancellation experiment of Section 6.3.1 results in exactly

such a path: p
(k)
neg = (neg)1

ARG1−−−→ . . .
ARG1−−−→ (neg)k (see Figure 6.6). GFoLDS therefore

requires three or more SWA layers in order to assign unique embeddings to each neg token

in p
(6)
neg and p

(7)
neg sequences: the GFoLDS model used in all experiments in this dissertation

(with the exception of Section 6.3.2.2 below) has only two SWA layers.

187

Figure 6.6: Example of an SNLI premise/hypothesis graph before (left) and after (right)
repeated external negation. For the sake of representational simplicity, an edge X ℓ−→ Y i (i.e.
with a bolded target) in the figure denotes an edge X ℓ−→ htop(G(Yi)) in the actual graph
(see the discussion of DMRS htop nodes in Section 5.3.1.1 of Chapter 5).

For sequence classification tasks, GFoLDS employs mean pooling over graph node embed-

dings to yield a vector representation ⃗e(G) of a given input graph G, as defined in Equation

6.7.

⃗e(G) =
∑

x∈V (G)

⃗M(G)x
|V (G)|

(6.7)

In order to successfully model double-negation cancellation in the experiment of Section

6.3.1, GFoLDS must be able to determine whether there is an even or odd number of external

negation prefixes in each hypothesis sentence. But by Theorem 2, the model’s embeddings of

the third through (k − 3)th neg tokens are identical for any pkneg sequence with k ≥ 6.

The impact of these tokens on the resulting graph embedding ⃗e(G) is therefore negligible.

To illustrate this, let n3 denote the third neg token in pkneg , and let Nk−2
3 = {n3, . . . , nk−2} be

the set containing the third through (k − 2)th neg tokens. For graphs G containing a pkneg

sequence5 with k ≥ 5, the sum in Equation 6.7 is then equivalent to the following formula in

Equation 6.8.
5In the case k = 5, Nk−2

3 = {n3}, and so the model can still assign unique embeddings to each node in
p
(5)
neg .

188

⃗e(G) =

 ∑
z ∈Nk−2

3

⃗M(G)z
|V (G)|

+

 ∑
x∈V (G)−Nk−2

3

⃗M(G)x
|V (G)|


=

(
(k − 4)

|V (G)|
· ⃗M(G)n3

)
+

 ∑
x∈V (G)−Nk−2

3

⃗M(G)x
|V (G)|

 (6.8)

When factoring in the noise that results from the fact that the input graphs G in the

double-negation cancellation experiment of Section 6.3.1 contain varying numbers of nodes

with varying labels, it is almost impossible for the model to distinguish an input graph

containing five external negation prefixes from a graph containing k > 5 prefixes. For k > 5,

it is therefore exceedingly difficult for the model to determine if the length of a given pkneg

sequence is even or odd, which—as discussed above—is critical for the double-negation

cancellation task of Section 6.3.1.

Superficial models such as BERT—which have learned positional embeddings for each

token in their input sequence—do not suffer from this limitation. This is to say that such

models are able to determine whether the number of external negation prefixes in a given

sequence is even or odd: their inability to inductively learn to cancel double negation arises

from another, yet-to-be-determined weakness (as discussed in Chapter 2).

6.3.2.2 Experimental Results

In order to verify Theorem 2 experimentally, I evaluated four GFoLDS architectures: one

model with n SWA layers for each 1 ≤ n ≤ 4—aside from the number of SWA layers, these

models are architecturally identical to that introduced in Chapter 4. As the number of SWA

layers in three of the four models differs from that employed in the rest of the dissertation,

all four models were evaluated with reset parameters.

The models’ objective in this probing task was to classify a given p(k)neg sequence as either

odd or even, for 1 ≤ k ≤ 12. For each 1 ≤ k ≤ 12, I trained each model on 24 p(i)neg sequences

189

for each 1 ≤ i ≤ k: each input graph consisted of only a p(i)neg sequence, and did not contain

any other tokens or edges.

The test data for this experiment was identical to the training data: the objective was to

determine whether the models are architecturally capable of counting modulo 2 the number of

nodes in the input sequence. For each 1 ≤ k ≤ 12, I trained each model on the p(i)neg sequences

(for all 1 ≤ i ≤ k) until it reached 100% classification accuracy on the test set—which is,

again, identical to the training set—halting training at 100 epochs if the model was unable to

achieve perfect test accuracy. All models were trained with a learn rate of 10−5 and a batch

size of 24.

Sequence Length 1-SWA 2-SWA 3-SWA 4-SWA
1 ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓
4 X ✓ ✓ ✓
5 X ✓ ✓ ✓
6 X X ✓ ✓
7 X X ✓ ✓
8 X X X ✓
9 X X X ✓
10 X X X ✓
11 X X X ✓
12 X X X X

Table 6.5: Results of the mod-2 counting experiment for four GFoLDS models with n SWA
layers (1 ≤ n ≤ 4). A ✓ symbol at row r indicates that the model was able to correctly
classify each p(k)neg sequence as odd or even within 100 training epochs, for all 1 ≤ k ≤ r.

The results of this experiment are shown in Table 6.5. For 1 ≤ n ≤ 3, the n-SWA layer

GFoLDS model is only able to correctly classify p(k)neg sequences for k ≤ n+ 2, as predicted by

the conclusions of Theorem 2.

The 4-SWA layer model is able to correctly classify sequences up to a length of 11—two

more than predicted. However, Theorem 2 only states that this model will assign identical

embeddings to the fifth through (k − 5)th neg tokens: it does not necessarily claim that a

GFoLDS model with n SWA layers is unable to classify the (mod 2) length of p(k)neg sequences of

190

k > n+2: the conclusions of the theorem merely indicate that it is exceedingly difficult for the

model to do so. In particular, although Theorem 2 and Equation 6.8 predict that the graph

embeddings of p(k1)neg and p(k2)neg (where k1, k2 > n+2 and k1 ≠ k2) will be very similar, they are

not identical : the term ⃗M(G)n3 in Equation 6.8 is scaled by (k1− 8)/|V (G)| for p(k1)neg , and by

(k2− 8)/|V (G)| for p(k2)neg . Given the ten encoder layers after its SWA stack, it is not infeasible

that the model could learn to leverage the small differences between graph embeddings to

yield accurate predictions for p(k>n+2)
neg sequences—although the results for the {1, 2, 3}-SWA

models show that this is still rather difficult—especially absent the noise that exists in the

external-negation data of Section 6.3.1: namely, other, non-neg premise/hypothesis sentence

tokens.

6.3.2.3 Discussion

The results of the experiment in Section 6.3.2.2—along with Theorem 2—shed light on

GFoLDS’ inability to learn to cancel double negation exhibited in Section 6.3.1: due to a

critical architectural weakness with respect to the model’s positional embedding module, it

is effectively unable to determine whether the length of a sequence of six or more repeated

external negation prefixes is even or odd. The ability to determine the (mod 2) length of a

given negation sequence is essential for determining the polarity of the hypothesis sentence,

and therefore the class label of a given example.

While Theorem 2 and the results of the experiment in Section 6.3.2.2 suggest that GFoLDS

may be able to learn to cancel double negation within the bounds of the experiment of Section

6.3.1—i.e. for sequences up to length seven—with an additional SWA layer6, such a solution

would merely address the symptoms, rather than the cause, of the problem: with three SWA

layers, the model would still fail to extrapolate double-negation cancellation to p(k)neg sequences

for k > 7, and so on. The results of this section (and of Section 6.3.1) therefore indicate
6An experiment to evaluate this hypothesis would require pretraining a second, 3-SWA layer GFoLDS

model from scratch. Due primarily to distance-related constraints (the desktop computer that I used to parse
the model’s pretraining data is located at the University at Buffalo), I estimated that this process would take
a minimum of three to four months, and would therefore not be feasible for this dissertation.

191

the need to redesign the positional encoding architecture of the model in order to overcome

this limitation. I leave the exploration of alternative approaches to the positional encoding

module to the discussion of future work in Chapter 7.

Furthermore, even after inoculation on depths 1-4, GFoLDS is unable to inductively learn

to cancel negation up to depth 5 (see Table 6.2)—i.e. within the bounds of its architectural

limitations. This is to say that GFoLDS also fails to inductively learn the law of the excluded

middle (LEM). In Chapter 2, I argued that one cause of the superficial LMs’ inability to

inductively learn LEM may be the procedure used to (pre-)train them: as the GFoLDS

model’s pretraining and SNLI fine-tuning procedures was essentially identical to that of those

superficial models, it may be the case that GFoLDS’ failure to learn inductively arose from

the same (pre-)training deficiencies. I leave further investigation into the cause of these

models’ failure to learn inductively to future work.

6.3.3 Sentence Membership Classification

The GFoLDS model’s inability to determine the (mod 2) length of sequences indicates that it

is likely unable to determine the global location of a given node in a graph structure as the

size of the graph increases. In this section, I evaluate that hypothesis by assessing the model’s

ability to determine whether a given node is in the first or second sentence of a two-sentence

pair.

6.3.3.1 Experiment

I used the SNLI development and test splits as the training and test sets (respectively) for

this experiment, employing the same procedure as in the SNLI experiment of Chapter 5

(described in detail in Section 5.3.1.1) to convert each premise/hypothesis pair into a single

graph: adding an if_x_then node, and inserting edges if_x_then ARG1−−−→ htop(G(H)) and

if_x_then ARG2−−−→ htop(G(P)), as illustrated in Figure 6.7.

The model’s objective was then to classify each node (except for the inserted if_x_then)

192

Figure 6.7: Illustration of the derivation of a single graph from a premise (Pi), hypothesis
(Hi) sentence pair (duplicated from Figure 5.4)

in each input graph as belonging to either S1 = P or S2 = H: if a node n ∈ G(Pi, Hi)

originated from Pi (see Figure 6.7), then its class label is S1. Conversely, if n originated from

Hi, then its class label is S2. As the label of a given node n is determined entirely by the

label of the edge from the if_x_then node to the htop of the subgraph to which n belongs,

this task is an effective proxy for measuring the model’s ability to encode the global positions

of nodes in a graph structure.

For this experiment, I employed a GFoLDS model with the same architecture as described

in Chapter 4—i.e. that used in all experiments in this dissertation aside from that of Section

6.3.2.2—and reset the model’s parameters to avoid any confounding factors: for example,

the model fine-tuned on SNLI may have learned that certain tokens occur more frequently

in hypothesis sentences. I trained the model with a learn rate of 5× 10−6, weight decay of

5× 10−6, and a batch size of 16 for an indefinite number of epochs, halting training when

combined S1/S2 test set accuracy failed to increase: the model reached convergence after

eleven epochs.

193

6.3.3.2 Results

The results of this experiment (see Table 6.6) show that S2 classification accuracy begins to

sharply decline after a depth—i.e. undirected distance from the if_x_then node—of two. Note

that the GFoLDS model employed in this experiment only has two SWA layers: as dicussed

in Chapter 4, the message-passing distance of the model’s positional encoding module is

limited by the number of SWA layers—with two SWA layers, nodes can only pass messages

within their two-hop neighborhoods. While the transformer encoder built into the model’s

architecture permits global attention between nodes, these results demonstrate that this does

not result in global graph positional encoding. This is to say that nodes at distances greater

than two are able to attend to the if_x_then node, but their positional encodings do not

suffice to determine their position relative to the if_x_then node in the graph.

While S1 accuracy does not begin to substantially decay until depth 15, this is easily

explained by an imbalance in class-label frequency at higher depths: premises (S1) in the

SNLI development (the training set for this experiment) and test splits are on average over

twice as long as their corresponding hypothesis (S2) sentences. As premise sentences are

longer, they tend to have more nodes at a further distance from the htop than hypothesis

sentences. This is to say that, beyond a distance of two from htop—at which point the model

cannot determine distance from htop—the model can learn that it is more likely to guess the

correct class label if it defaults to S1.

This conjecture is not contradicted by the fact that the model does not attain near-perfect

S1 accuracy on depths 15-19 in Table 6.6 despite the lack of S2 nodes at those depths, as the

development set—which the model was trained on—does have S2 nodes at depths 15-19.

These results indicate that GFoLDS is unable to encode the global positions of nodes

within graphs. This deficiency likely had a negative impact on GFoLDS’ performance in the

SNLI experiment of Chapter 5, as the model is unable to accurately predict whether a given

node belongs to the premise sentence or to the hypothesis sentence. This calls into question

the model’s applicability to other multi-sentence tasks—although the model was not designed

194

Depth S1 Accuracy S2 Accuracy Total Accuracy
Overall 87.0% 72.3% 82.1%
1 80.3% 82.4% 81.3%
2 86.3% 89.0% 87.6%
3 83.9% 66.8% 76.5%
4 88.5% 72.5% 83.6%
5 89.3% 61.9% 82.8%
6 89.6% 50.5% 82.6%
7 89.2% 45.3% 83.3%
8 88.5% 46.3% 84.3%
9 87.4% 45.4% 84.1%
10 88.2% 42.1% 85.3%
11 88.5% 43.4% 86.5%
12 87.1% 26.9% 84.6%
13 88.0% 0.0% 85.9%
14 87.4% 0.0% 85.4%
15 77.1% — 77.1%
16 62.5% — 62.5%
17 58.8% — 58.8%
18 66.7% — 66.7%
19 33.3% — 33.3%

Table 6.6: GFoLDS’ test set accuracy on the S1/S2 classification task, by node depth
(undirected distance from the if_x_then node). Total accuracy denotes the accuracy for all
S1 and S2 nodes at the depth in question. The — symbol in the S2 column for depths 15-19
indicates that there were no S2 nodes in the test set at those depths.

with such tasks in mind, as discussed in Chapter 5.

Fortunately, this problem stems from the same underlying cause as that of the limitations

uncovered in Sections 6.3.1 and 6.3.2: the model’s positional encoding architecture. As

discussed in Section 6.3.2.3, I defer the discussion of potential remedies for this limitation to

Chapter 7.

6.4 Discussion

The scalability experiment of Section 6.1 strongly suggests that GFoLDS is scalable in terms

of final pretraining loss and downstream task performance. The fact that the model is likely

to scale with respect to parameter count and pretraining dataset size represents a significant

195

step towards achieving one of the primary objectives of this dissertation: demonstrating the

viability of language modeling over logical forms. These results indicate the applicability of

language models over logical forms in real-world world settings, suggesting that such models

are not merely esoteric curiosities, but rather have the potential to compete with superficial

LMs at scale.

As discussed in Chapter 1, Villalobos et al. (2024) estimate that, given the Chinchilla

Scaling Laws (Hoffmann et al., 2022) and the rate at which SoTA LLMs are expanding, the

stock of available high-quality natural language training data will be exhausted at some point

between 2026 and 2032. As recent advances in LLM performance have been primarily driven

by increasing model size—and necessarily, increasing training dataset size—(Muennighoff

et al., 2024) this impeding exhaustion of available training data represents a potential ceiling

with respect to the further improvement of language models’ performance.

However, the results of Section 6.1 indicate that GFoLDS (∼174 million parameters) is

underparameterized with half of the pretraining data used in Chapter 4: i.e. at ∼254 million

tokens. For comparison, Hoffmann et al.’s (2022) scaling laws suggest that BERTlarge (∼330

million parameters) is overparameterized for its pretraining corpus of ∼3.3 billion tokens.

This is to say that GFoLDS requires significantly less pretraining data per parameter than

superficial LMs: Hoffmann et al.’s (2022) scaling laws predict that a superficial LLM with the

same parameter count as GFoLDS necessitates ∼5 billion pretraining tokens—roughly twenty

times more than the ∼254 million tokens at which GFoLDS becomes overparameterized.

Language models over logical forms may therefore present an avenue for continuing the

improvement of language models at a more sustainable rate of data consumption than their

superficial counterparts.

In addition, the results in Section 6.1 provide further evidence in support of the Accelerated

Learning Hypothesis (ALH) of Chapter 1: namely, that language models over logical forms

learn useful representations with less data than their superficial counterparts.

Section 6.2 provides direct evidence in support of part (i) of the ALH. I show that GFoLDS

196

maintains near-peak performance on two elementary probing tasks (POS prediction and

quantifier agreement) throughout pretraining, starting at the first point of measurement (5%

of the first epoch). This suggests that the linguistic knowledge injected into GFoLDS by

means of its DMRS-derived input graphs drastically facilitates the model’s learning of basic

linguistic phenomena. In contrast, neither BERT comparison model even begins to improve

on the elementary tasks until halfway through the first pretraining epoch.

Although GFoLDS’ DMRS input graphs do not explicitly encode POS7, they contain

sufficient information to reconstruct this data: for example, only nouns have person and

number features; only verbs have tense and mood features; quantifier nodes do not have

features; etc. In contrast, a superficial model such as BERT learns words’ parts-of-speech

from much noisier information than GFoLDS: namely, textual co-occurrence. Similarly, the

quantifier-agreement task is likely facilitated by the fact that the number of the head noun in

each quantifier’s restriction is directly encoded via features in GFoLDS’ DMRS-derived inputs.

BERT, on the other hand, must first learn the patterns in surface text that correspond to

pluralization—and distinguish them from verbal person/number agreement—to be able to

differentiate singular from plural nouns, before it can begin to learn which quantifiers co-occur

with each type of noun.

This built-in linguistic knowledge likely facilitates GFoLDS’ performance on more complex

tasks, as demonstrated by the model’s performance relative to that of the BERT comparison

models on the RELPRON test set—and, to a lesser degree, the MegaVeridicality V2.1

factuality task: GFoLDS immediately begins improving, while the BERT models do not

begin to see progress until approximately halfway through the first epoch—roughly the same

point at which they begin to improve on the elementary tasks.

Together, the results of GFoLDS and the BERT comparison models on the elementary

and complex tasks in Section 6.2 strongly support part (i) of the ALH: the (aspects of)
7While categories (parts-of-speech) are directly encoded in DMRS predicate labels (as suffixes of these

strings), GFoLDS does not have access to this information: each predicate label is tokenized into an integer
before being passed to the model’s embedding layer (see Chapter 4).

197

linguistic knowledge incorporated into linguistically-informed LMs obviates the need to learn

elementary linguistic phenomena, allowing them to immediately begin learning more complex

patterns.

Section 6.3, however, reveals a serious limitation in the GFoLDS model’s positional

encoding architecture, which likely inhibits performance on a range of multi-sentence-level

NLP tasks. This limitation results in the model’s inability to count long sequences of repeated

nodes—which are critical to the negation-cancellation task of Section 6.3.1—and determine

the sentence to which a given node belongs, which may present a serious impairment to

GFoLDS’ performance on NLI tasks.

In Chapter 7, I propose a new positional encoding architecture to overcome this critical

weakness in the model’s architecture. I additionally discuss additional pretraining objectives

intended to improve its performance on multi-sentence tasks such as NLI, and potential future

directions—such as graph-based text generation—for language models over logical forms.

6.5 Proof of Theorem 2

In this section, I formally prove Theorem 2 of Section 6.3.2.1: uninterested readers may safely

skip to Chapter 7. Although the main idea of the proof is conceptually rather simple, it

requires a considerable amount of machinery. For this reason, I provide a conceptual sketch

in Section 6.5.1 in order to illustrate the intuition behind the formal proof given in Section

6.5.2.

6.5.1 Proof Sketch

As discussed in Section 6.3.2.1, the main consequence of Theorem 2 is that, given a length-

(k− 1) path p(k)neg = neg ARG1−−−→ . . .
ARG1−−−→ neg , a GFoLDS model with n SWA layers will assign

identical embeddings to the (n+ 1)th through (k − n)th nodes in p(k)neg .

Recall from the discussion of the GFoLDS architecture in Chapter 4 that each SWA layer

198

Figure 6.8: Illustration of the application of two SWA layers to the sequence p(6)neg (see Section
6.3.2). The top row represents the input to the first layer (the output of the embedding
layer), the second row the output of the first layer (equivalently, the input to the second
layer), and the bottom row the output of the second layer. Green arrows indicate the identity
(i.e. skip/residual) connections, red arrows the forward SWA block (W (f)

ARG1), and blue arrows
the backward SWA block (W (b)

ARG1) of each layer. Dashed arrows denote the neg ARG1−−−→ neg
edges of the input graph p(6)neg .

aggregates local neighborhoods: with n SWA layers, the model only passes messages within a

given node’s n-hop neighborhood. The critical idea of the proof of Theorem 2 is that in the

sequence p(k)neg , the (n+ 1)th through (k − n)th neg nodes have identical n-hop neighborhoods.

As an example, the application of two SWA layers to the sequence p(6)neg is illustrated in

Figure 6.8. The output embedding of the SWA stack for the ith node in the sequence is

entirely determined by the shape—i.e. labeled graph isomorphism class—of the subgraph

F(y(2)i) spanned by all paths8 from the input of the SWA stack (represented by the top row

of Figure 6.8) to the ith node in the output of the SWA stack (represented by the bottom row

of Figure 6.8). This is to say that F(y(2)i) encodes all of the transformations performed by

the SWA stack on the ith node embedding: all nodes in p(k)neg have the same label (neg)—and

so have identical input embeddings to the SWA stack—and all edges have the same label,

so all transformations within the SWA stack will be applications of the W (f)
ARG1 and W (b)

ARG1

projections in each SWA layer (see Section 4.2.2 of Chapter 4).

As shown in Figure 6.9, each of the subgraphs on the top and bottom rows—F(y(2)1)

(Figure 6.9a), F(y(2)2) (Figure 6.9b), F(y(2)5) (Figure 6.9e), and F(y(2)6) (Figure 6.9f)—are

unique: the first, second, fifth, and sixth neg nodes in p
(6)
neg can receive unique embeddings

8Excluding those paths containing dashed arrows in Figure 6.8, which are only included in the figure for
reference.

199

(a) F(y(2)1) (b) F(y(2)2)

(c) F(y(2)3) (d) F(y(2)4)

(e) F(y(2)5) (f) F(y(2)6)

Figure 6.9: F(y(2)i) subgraphs of the graph in Figure 6.8 for each neg node in the sequence p(6)neg .
The ith output (i.e. bottom-row) node in each F(y(2)i) subgraph is highlighted for reference.

from a GFoLDS model with two SWA layers. However, the two graphs in the middle row

are identical—i.e. F(y(2)3) ≃ F(y(2)4) (see Figures 6.9c-6.9d)—meaning that a two-layer SWA

stack must assign identical embeddings to the third and fourth nodes in p(6)neg .

It is then straightforward to show that the third and fourth neg nodes will receive identical

embeddings from the GFoLDS model: the embeddings outputted by the SWA stack for these

two nodes are identical, so they will attend to all other nodes in an identical manner within

the encoder stack.

6.5.2 Formal Proof

For all 1 ≤ i ≤ k, let y(0)i = ∅, and for all 1 ≤ i ≤ k and all 1 ≤ m ≤ n, define y(m)
i as follows

in Equation 6.9a:

200

y
(m)
i = f (F)

m (y
(m−1)
i , i) ∪ f (B)

m (y
(m−1)
i , i) ∪ {y(m−1)

i } (6.9a)

f (F)
m (y

(m−1)
i , i) =


∅ if i = 1

{(0, ∅)} if m = 1

{(0, y(m−1)
i−1)} otherwise

(6.9b)

f (B)
m (y

(m−1)
i , i) =


∅ if i = n

{(1, ∅)} if m = 1

{(1, y(m−1)
i+1)} otherwise

(6.9c)

Now, let SWA(G)i denote the embedding that the SWA module of M assigns to the ith

node xi of G. I first prove the following lemma (Lemma 6.1):

Lemma 6.1. For all 1 ≤ i, j ≤ k: y(n)i = y
(n)
j ↔ SWA(G)i = SWA(G)j.

Proof. First, note that the layer norm and feed-forward blocks of an SWA layer are vector-wise

functions: they will always map identical input vectors to identical output vectors. For the

purposes of this proof, those aspects of the model architecture can therefore be ignored.

Now, we observe that all node and argument labels in the path p are identical, by

assumption. This implies that for any given nodes xi, xj in p, SWA(G)i and SWA(G)j are

entirely differentiated by the history of applications of the forward and backward projection

layers of each SWA layer in the model.

By definition, for all 1 ≤ m ≤ n, y(m)
i encodes exactly the history of applications of the

forward and backward projection layers of the first to mth SWA layers.

Define the mapping F : y
(–)
(–) → Gph as in Equation 6.10a, where Gph denotes the class of

labeled, directed graphs.

201

F(X) =


({(0, 0)}, ∅) if X = ∅(⋃

x→y ∈FE(X,(0,0))

{x, y},FE(X, (0, 0))

)
otherwise

(6.10a)

FE(X, t) =



F (F)
E (Y, t) ∪ F (I)

E (W, t) if X = {(0, Y),W}

F (B)
E (Z, t) ∪ F (I)

E (W, t) if X = {(1, Z),W}

∅ if X = ∅

F̂E(X, t) otherwise

(6.10b)

F (I)
E (X, (a, b)) = {(a, b− 1)

I−→ (a, b)} ∪ FE(X, (a, b− 1)) (6.10c)

F (F)
E (X, (a, b)) = {(a− 1, b− 1)

F−→ (a, b)} ∪ FE(X, (a− 1, b− 1)) (6.10d)

F (B)
E (X, (a, b)) = {(a+ 1, b− 1)

B−→ (a, b)} ∪ FE(X, (a+ 1, b− 1)) (6.10e)

F̂E({(0, Y), (1, Z),W}, t) = F (I)
E (W, t) ∪ F (F)

E (Y, t) ∪ F (B)
E (Z, t) (6.10f)

Lemma 6.2. For all 1 ≤ i, j ≤ k and all 0 ≤ m ≤ n: F(y(m)
i) = F(y(m)

j)↔ y
(m)
i = y

(m)
j .

Proof. The left-to-right direction follows from the fact that F is a function. It remains to

prove the injectivity of F—i.e. F(y(m)
i) = F(y(m)

j)→ y
(m)
i = y

(m)
j .

Note that each y
(m)
(–) belongs to the class Y of structures, which consists of sets of the

form {(0, X), (1, Y), Z}, {(1, Y), Z}, {(0, X), Z}, {Z}, or ∅, where X, Y , and Z are in the

class Y . The local neighborhood of the root node (0, 0) of any F(y(m)
q) is entirely determined

by the pattern of Y that matches y(m)
q . Each daughter node d of the root (0, 0) is itself the

root node of a the subgraph of F(y(m)
q) spanned by all nodes x such that there exists a path

x⇒ d, and the local neighborhood of d is entirely determined by the structure of X, Y , or

Z. By induction, each F(y(m)
q) is entirely determined by y(m)

q .

Lemma 6.3. For all 1 ≤ m ≤ n:

i. for all 1 ≤ i ≤ m, there does not exist j ̸= i such that y(m)
i = y

(m)
j

202

ii. for all (k −m) ≤ i ≤ k, there does not exist j ̸= i such that y(m)
i = y

(m)
j

Proof. I prove (i): the proof of (ii) is formally dual. The proof proceeds by contradiction:

assume there exists some j ̸= i such that y(m)
i = y

(m)
j . Then F(y(m)

i) = F(y(m)
j).

By construction (Definition 6.10), F(y(m)
i) contains a path p0 = (1 − i,−m)

I−→ . . .
I−→

(1− i, 1− i) F−→ . . .
F−→ (0, 0), which consists of exactly m+ 1− i I-labeled edges, followed by

exactly i−1 F -labeled edges, and a path p1 = (k−i,−m)
I−→ . . .

I−→ (k−i, i−k) B−→ . . .
B−→ (0, 0),

containing exactly m+ i− k I-labeled edges, followed by exactly k − i B-labeled edges.

By the assumption that y(m)
i = y

(m)
j , F(y(m)

j) also contains a sequence p′0 = x0
I−→ . . .

I−→

xq
F−→ . . .

F−→ xr, containing exactly m+1−i I-labeled edges, followed by exactly i−1 F -labeled

edges. By construction, the length of the longest path in F(y(m)
j) is m, therefore xr = (0, 0).

Again by construction, F(y(m)
j) only contains F -labeled edges (a− 1, b− 1)

F−→ (a, b) (for all

(a, b) such that a > 1− i, b > −m)—therefore, xq = (1− i, 1− i). Note that—once again by

construction—for any t, min{a | (a, b) ∈ V (F(y(m)
t))} = max (1− t,−m), where V (F(y(m)

t))

denotes the set of nodes in F(y(m)
t). Therefore, the existence of (1− i, 1− i) in V (F(y(m)

j))

implies that j ≥ i.

Again by the assumption that y(m)
i = y

(m)
j , F(y(m)

j) contains a sequence p′1 = x0
I−→

. . .
I−→ xq

B−→ . . .
B−→ xr, containing exactly m + i − k I-labeled edges, followed by exactly

k − 1 B-labeled edges. As the length of the longest path in F(y(m)
j) is m, xr = (0, 0). By

construction, F(y(m)
j) only contains B-labeled edges (a+ 1, b− 1)

F−→ (a, b) (for all (a, b) such

that a < k − i, b > −m)—therefore, xq = (k − i, i − k). Again by construction, for any t,

max{a | (a, b) ∈ V (F(y(m)
t))} = min(k − t,m): therefore, the existence of (k − i, i − k) in

V (F(y(m)
j)) implies j ≤ i. This, combined with the above result, implies that j = i: this is a

contradiction.

Lemma 6.4. For all m < i, j ≤ k −m: y(m)
i = y

(m)
j

Proof. By construction, max{a | (a, b) ∈ V (F(y(m)
t))} = min(k − t,m) and min{a | (a, b) ∈

V (F(y(m)
t))} = max (1−t,−m). As i ≤ k−m and j ≤ k−m, max{a | (a, b) ∈ V (F(y(m)

i))} =

203

max{a | (a, b) ∈ V (F(y(m)
j))} = m. As m < i and m < j, min{a | (a, b) ∈ V (F(y(m)

i))} =

min{a | (a, b) ∈ V (F(y(m)
j))} = −m. As the length of the longest path in both graphs is m,

V (F(y(m)
i)) and V (F(y(m)

j)) both contain {(−q,−q) | 0 ≤ q ≤ m} ∪ {(q,−q) | 0 ≤ q ≤ m},

and do not contain any node (a, b) such that there exists some 1 ≤ q ≤ m such that

b < −q ∧ (a < −q ∨ a > q). By construction, for any t and any (a, b) ∈ V (F(y(m)
t)),

V (F(y(m)
t)) contains {(c, b) | −m ≤ c < a}: therefore, V (F(y(m)

i)) = V (F(y(m)
j)).

Again by construction, the edges of F(y(m)
t) are entirely determined by V (F(y(m)

t)) for

any t. This implies that F(y(m)
i) = F(y(m)

j), which, by Lemma 6.2, in turn implies that

y
(m)
i = y

(m)
j .

By Lemma 6.3, for all i, j ≤ n such that i ≠ j, and all i′, j′ ≥ k − n such that i′ ̸= j′:

y
(m)
i ̸= y

(m)
j and y

(m)
i′ ̸= y

(m)
j′ ;. By Lemma 6.1, this implies that SWA(G)i ̸= SWA(G)j and

SWA(G)i′ ≠ SWA(G)j′ . By Lemma 6.4, for all n < i, j < k − n, y(m)
i = y

(m)
j . Lemma 6.1

then implies that SWA(G)i = SWA(G)j.

It remains to show that SWA(G)i = SWA(G)j ↔M(G)i =M(G)j. Note that, as in the

SWA layers, the layer norm and feed-forward blocks of the GFoLDS encoder layers always

map identical input vectors to identical output vectors: for the purposes of this proof, they

can be ignored. It therefore suffices to prove that, for each multi-head attention block MHA,

x⃗i = x⃗j → MHA(X)i = MHA(X)j.

For any q, MHA(X)q is defined as in Equation 6.11, where || denotes vector concatenation,

H the number of attention heads, A(h) the hth attention head, and W (O) is a Rdmodel ×Rdmodel

matrix.

MHA(X)q =

(
H

||
h=1

A(h)(X)q

)
W (O) (6.11)

Again, W (O) always maps identical input vectors to identical output vectors, and so can be

ignored for the purposes of this proof. It therefore suffices to prove that x⃗i = x⃗j → A(h)(X)i =

A(h)(X)j for all 1 ≤ h ≤ H. Each attention head A(h)(X) is defined as in Equation 6.12,

204

where Q̂ = XQ, K̂ = XK, and V̂ = XV (Q, K and V are Rdmodel × Rdmodel/H projection

matrices).

A(h)(X) = softmax

(
(Q̂W (Q,h))(K̂W (K,h))⊤√

dkey

)
V̂ W (V,h) (6.12)

The term
√
dkey is a normalizing constant and can therefore be ignored. For any q, A(X)q

is then equivalent to the formula given in Equation 6.13, where N denotes the number of

input tokens.

A(h)(X)q =
N∑
r=1

((Q̂W (Q,h))q · (K̂W (K,h))r)(V̂ W
(V,h))r (6.13)

Note that (Q̂W (Q,h))q = x⃗qQW
(Q,h), (K̂W (K,h))r = x⃗rKW

(K,h), and (V̂ W (V,h))r =

x⃗rVW
(V,h). The assumption that x⃗i = x⃗j therefore implies that (Q̂W (Q,h))i = (Q̂W (Q,h))j.

This in turn implies that A(h)(X)i = A(h)(X)j, by definition (Equation 6.13).

This completes the proof of Theorem 2.

205

Chapter 7

Future Directions

This chapter is dedicated to a variety of proposed future directions in the research program

of language modeling over logical forms. I first discuss a potential application of the GFoLDS

model that was left unexplored in this dissertation: namely, its use for lower-resource languages

such as German, Turkish, and Korean (Section 7.1).

In several portions of Chapters 4-6, I identified limitations and weaknesses of the GFoLDS

model: Section 7.2 proposes adjustments to the current GFoLDS architecture and pretraining

procedure that are intended to both address those limitations and yield further improvements

to the model’s performance. I then dedicate Section 7.3 to a discussion of the next step in the

research program that I have outlined over the course of this dissertation: a graph-to-graph

generative model over logical forms.

7.1 Applications to Lower-Resource Languages

GFoLDS’ demonstrated capability to learn more from less data than superficial LMs in

Chapters 5-6 naturally suggests its applications in lower-resource settings. Take, for example,

German, Turkish, and Korean, all of which are fairly major languages, with roughly 95

206

million1, 80 million2, and 78 million3 native speakers, respectively.

Text in these languages, however, constitutes a fairly small proportion of the overall

stock of available written language data: in the 2024 Common Crawl4 release, German text

represents 5.3948% of the overall data, 0.9864% is in Turkish, and only 0.6504% of the data

is written in Korean. For comparison, English text comprises 46.4536% of the 2024 Common

Crawl release.

From Villalobos et al.’s (2024) estimate of 7% growth in the stock of available language

data per year, it follows that it will take ∼32, ∼57, and ∼63 years for the stock of German,

Turkish, and Korean language data (respectively) to reach the amount of present-day English

data. Given rule-based grammars that can generate (D)MRS representations for these

languages, a more data-economical model such as GFoLDS would allow for more rapid

progress towards higher-quality LMs in these languages.

Although constructing a rule-based, broad-coverage grammar for a language is admittedly

not a trivial undertaking, it is not unreasonable to assume that this would be a significantly

faster process than waiting the approximately 32-63 years required for the amount of data

available in those languages to reach current English-language levels. Furthermore, broad-

coverage grammars do exist for some lower-resource languages: e.g. Spanish (Zamaraeva,

Allegue, and Gómez-Rodríguez, 2024), French (Emirkanian, Da Sylva, and Bouchard, 1996),

German (Cramer and Zhang, 2009), and Japanese (Mitsuishi, Torisawa, and Tsujii, 1998).

7.2 Improvements to GFoLDS

Section 7.2.1 proposes a solution to the limitations of GFoLDS’ positional encoding architecture

uncovered in Chapter 6, and discusses how the proposed approach presents a likely avenue

to rectify the model’s weaknesses that were exposed in that chapter. In Section 7.2.2, I
1https://gsll.unc.edu/learning-resources/german-grammar-videos/
2https://ceus.indiana.edu/about/languages/turkish.html
3https://liberalarts.utexas.edu/languages/korean.html
4https://commoncrawl.github.io/cc-crawl-statistics/plots/languages

207

https://gsll.unc.edu/learning-resources/german-grammar-videos/
https://ceus.indiana.edu/about/languages/turkish.html
https://liberalarts.utexas.edu/languages/korean.html
https://commoncrawl.github.io/cc-crawl-statistics/plots/languages

outline potential modifications to the model’s embedding layer that permit the inclusion of

out-of-vocabulary (OOV) items and CARGs in its input graphs.

Section 7.2.3 suggests a possible adaptation of the embedding module that would allow the

input of sequences of multiple sentences to the GFoLDS model, and discusses a potential new

pretraining objective that would be licensed by such a capability (Section 7.2.3.2). Finally, in

Section 7.2.4, I discuss the potential for non-Euclidean—namely, hyperbolic—embeddings to

improve the model’s performance, in light of the hierarchical structure induced by GFoLDS’

DMRS-derived input graphs.

7.2.1 Positional Encoding Module

The double-negation cancellation experiments—along with Theorem 2—of Chapter 6 revealed

a critical weakness of the GFoLDS positional encoding network: its embeddings do not encode

nodes’ global positions in the graph structure. Recall from the discussion of the GFoLDS

architecture in Chapter 4 that the positional encoding module consists of an embedding layer

that encodes the labels and DMRS features of each node, followed by a message-passing

neural network (MPNN; i.e. the SWA block).

7.2.1.1 Background

Morris et al. (2019) show that standard MPNNs such as the GFoLDS SWA block are strictly

as expressive as the 1-Weisfeiler-Leman graph isomorphism test (1-WL; Leman and Weisfeiler,

1968), which fails to distinguish a wide range of isomorphic (sub-)graphs (Arvind et al., 2015).

However, Rampášek et al. (2022) demonstrate that MPNNs augmented with positional and

structural encodings can surpass the expressive power of 1-WL. The authors divide these

two encoding types into three categories, for a total of six subcategories: local, global, and

relative positional/structural encodings.

Local positional encodings are those which represent each node’s position and role relative

to other nodes within its local k-hop neighborhood, while local structural encodings imbue

208

each node with a representation of its local neighborhood. The current SWA architecture

clearly constructs local structural encodings: each node’s SWA embedding is an aggregation

of its k-hop neighborhood, and is sensitive to the labels of both the nodes and edges within

that neighborhood.

On the other hand, relative positional encodings represent the distance between pairs of

nodes across the graph, where the similarity between two nodes’ local positional encodings

decreases as the graph distance—i.e. the length of the shortest path—between them increases.

Relative structural encodings permit the measurement of the difference between the local

neighborhoods of any two nodes, and can be achieved with sufficiently powerful local structural

encodings.

Global positional encodings represent each node’s position within the entire graph: Lim

et al. (2023) show that global positional encodings can be achieved via a combination of

relative positional and local structural encodings. Arguably, local positional encodings are a

consequence of global positional encodings, as a representation of a node’s position within

the entire graph structure leads to a representation of that node’s position within its local

neighborhood. Global structural encodings are features assigned to the graph as a whole,

and are not relevant to the current discussion.

Therefore, to yield the full suite of structural and positional encodings outlined in Ram-

pášek et al. (2022), it suffices to integrate relative positional encodings into GFoLDS’ positional

encoding module: GFoLDS already has local structural encodings; relative structural encod-

ings can be achieved with sufficiently powerful local structural encodings; local positional

encodings are a consequence of global positional encodings; and global positional encodings

can be achieved with relative positional and local structural encodings.

Many distance-based approaches to graph embeddings employ spectral embedding methods:

techniques that derive node embeddings from the eigendecomposition of the graph’s Laplacian

matrix (Chami et al., 2022). However, such approaches cannot readily generalize to unseen

graphs, as the spectral decomposition depends on the choice of eigenbasis and sign of the

209

individual eigenvectors, and the dimension of the Laplacian’s eigenvectors depends on the

number of nodes in the graph.

Mialon et al. (2021) construct a spectral graph transformer that avoids this problem

through the use of diffusion kernels (Kondor and Lafferty, 2002): a generalization of the

classical heat kernel to graph domains. Concretely, the diffusion kernel K(β)
G (x, y) can be

viewed as the proportion of thermal energy that propagates from x to y along the edges

of the graph G within a fixed amount of time β. While the diffusion kernel relies on the

eigendecomposition of the graph’s Laplacian, its output K(β)
G (x, y) is simply a non-negative

scalar.

Note that the diffusion kernel is only defined on undirected graphs, while the DMRS-derived

graphs described in Chapter 4 are directed and edge-labeled. However, the SWA mechanism

(also described in Chapter 4) passes messages along both directions of each directed edge:

it is therefore reasonable to use an undirected notion of distance with respect to GFoLDS’

input graphs. Letting U(G) denote the underlying undirected graph5 of a directed graph G,

we may define a diffusion kernel K(β)
G (–, –) on a GFoLDS input graph as in Equation 7.1a,

where e(–) is the matrix exponential, β > 0 is a tunable hyperparameter, and H(G) ∈ RN×N

(Equation 7.1b) is the negative of the Laplacian matrix L(G) of G (H(G) = −1 · L(G)). The

term dU(G)(i) denotes the degree of the ith node in U(G): dU(G)(i) = |{j | {i, j} ∈ E(U(G))}|.

K
(β)
G (xi, xj) =

(
eβH

(G)
)
i,j

(7.1a)

H
(G)
i,j =


1 if {i, j} ∈ E(U(G))

−dU(G)(i) if i = j

0 otherwise

(7.1b)

5Concretely, U(G) = (V,U(E)) is derived by converting each directed edge of G = (V,E) into an undirected
edge: {x, y} ∈ U(E)↔ (x→ y ∈ E ∨ y → x ∈ E).

210

7.2.1.2 Proposed Approach

Mialon et al.’s (2021) spectral graph transformer uses the diffusion kernel to construct a

second attention mechanism in which the attention αi,j between the nodes xi and xj is

given by K(β)
G (xi, xj). Rather than injecting the graph structure directly into each encoder

layer—which forces the encoder to adhere to the graph structure—I propose incorporating

a diffusion-kernel-based message-passing block into GFoLDS’ positional encoding network.

The basic mechanism is similar to that of Mialon et al. (2021): message passing between all

nodes in the graph, weighted by the diffusion kernel.

For a given DMRS-derived graph G and node x ∈ V (G), its proposed diffusion-kernel-

weighed positional encoding P (x,G) is defined in Equation 7.2, where f and g are feed-forward

layers (possibly linear layers, or even the identity function).

P (x,G) = g

 ∑
y∈V (G)

K
(β)
G (x, y) · f(y)

 (7.2)

There are then three obvious ways to incorporate P into the pre-existing positional

encoding network’s architecture (see Chapter 4), which are laid out in Equation 7.3, where

E(X,G) denotes the node label/feature embedding layer.

EMB(X,G) = E(X,G) + SWA(P (E(X,G), G), G) (7.3a)

EMB(X,G) = E(X,G) + P (SWA(E(X,G), G), G) (7.3b)

EMB(X,G) = E(X,G) + SWA(E(X,G), G) + P (E(X,G), G) (7.3c)

Under the first approach (Equation 7.3a), the output of P (X,G) is fed into the SWA

block. However, this configuration is likely to be problematic: the low expressivity of MPNNs

such as the GFoLDS model’s SWA block could cause the irreparable loss of information from

the more expressive positional encoding architecture P (Rampášek et al., 2022).

211

This leaves the approach laid out in Equation 7.3b, in which the output of the SWA

block is fed into P , and that of 7.3c, where the outputs of both modules are simply summed

together. It is unclear which configuration would be more effective, and the more performant

method will likely have to be determined empirically: based on my experience pretraining the

GFoLDS model in Chapter 4, I estimate that this would require four to six pretraining runs

in order to compare the two approaches with optimal hyperparameter configurations—well

within the realm of feasibility.

7.2.1.3 Applications

Regardless, the use of this diffusion-kernel-based positional encoding is likely to overcome

the limitations to the GFoLDS model uncovered in Chapter 6. Recall that in the sentence-

membership classification experiment of Chapter 6, I joined two graphs G1, G2 with an

if_x_then token: GFoLDS’ task was to classify each node—aside from if_x_then—as

belonging to S1 (i.e. G1) or S2 (i.e. G2).

Let x1 denote the node that is connected to if_x_then via an edge if_x_then ARG2−−−→ x1

(i.e. x1 = htop(G1)). Then membership of a given node x in S1 is equivalent to the right-hand

expression in Equation 7.4.

x ∈ S1 ↔ K
(β)
G (x, x1) > K

(β)
G (x, if_x_then) (7.4)

In words: x is closer to x1 than it is to the connecting if_x_then node. The SWA block

permits the detection of x1, while P allows the model to determine the relative distance

between nodes. Given that this is a binary classification task (x ∈ S2 ↔ x /∈ S1), the ability

to detect membership in S1 suffices to achieve the S1/S2 membership detection objective.

Note that in the mod-2 counting experiment of Chapter 6, the input graphs were simply

length-n linear sequences. In this case, the diffusion kernel is purely a function of the distance

between nodes (Kondor and Lafferty, 2002). Specifically, for the ith node in the sequence xi,

the kernel with respect to the initial node x0 is a sinusoidal function (Equation 7.5).

212

K
(β)
G (x0, xi) =

1

n

n−1∑
j=0

e−2β(1−cos(2πj
n)) · cos

(
−2πij
n

)
(7.5)

In this way, spectrum-based embedding methods can be viewed as a generalization to

graphs of the sinusoidal positional embeddings introduced by Vaswani et al. (2017) for

superficial transformers (Dwivedi et al., 2023). Critically, this ensures that each node in the

sequence will receive a unique embedding, thereby facilitating the mod-2 counting task: as

discussed in Chapter 6, the ability to perform mod-2 counting is critical for the double-negation

cancellation task introduced in Chapter 2.

7.2.2 Incorporating OOV Terms and CARGS

In Chapter 4, I simply masked out-of-vocabulary (OOV) terms and CARGs from GFoLDS’s

DMRS-derived graphs, omitting these predicates and constant arguments from the model’s

input. The negative effects of the limitation introduced by this design choice were most

apparent during the RELPRON experiment of Chapter 5, in which I had to create a new subset

of the dataset that excluded examples containing OOV items and/or CARGs, preventing a

direct comparison between GFoLDS and the FDS (Emerson, 2018) and FDSAS (Lo et al.,

2023) models on this task.

Note that the OOV items and CARGs both present the same problem and, therefore, have

the same solution: in its current implementation (i.e. as defined in Chapter 4) the model’s

token embedding layer ET simply takes each node’s label (i.e. predicate) and looks up the

corresponding embedding (see Chapter 4 and Equation 7.7a). These items are not in the

embedding layer’s vocabulary, and so cannot be assigned embeddings.

To enable the inclusion of CARGs and OOV items in GFoLDS’ input graphs, I propose

modifying both the embedding layer and token-label prediction head of the model. Specifically,

I intend to replace ET with a (very) small, character-level encoder transformer (c.f. Yin et al.,

2020, whose GNN model produces image node embeddings via CNN). Each predicate label

213

P will then be tokenized into its constituent characters P1, . . . , Pn, resulting in a small, fixed

embedding layer vocabulary for the transformer ET : the 95 ASCII characters. The output of

ET will then be generated by mean pooling over the token (i.e. character) embeddings in P .

The remainder of the model will proceed as defined in Chapter 4, with the exception

of the token-label prediction head. As incorporating OOV items and CARGs results in an

unbounded set of node labels, the current pretraining objective—cross-entropy loss with

respect to the predicted node label—is not viable. Therefore, I propose replacing the token-

label prediction head with a small, character-level decoder transformer: for each node ni with

corresponding hidden state x⃗i, the first token in the decoder sequence will be (downsampled)

x⃗i (c.f. Tang et al., 2023). The decoder will be tasked with predicting the sequence of

characters corresponding to the label of ni, conditioned on x⃗i.

Note that this approach does not necessarily preclude the masked-node modeling (MNM)

pretraining objective laid out in Chapter 4. For each node n selected to be masked, the

model’s input will be replaced with the [MASK] token, as before. The decoder head’s

prediction target will then be the sequence [MASK]1, . . . , [MASK]k, where k is the length

in characters of the label ℓ(n) of n: loss for that node will then be calculated as the mean

cross-entropy for the distribution over [MASK]i with respect to the character ℓ(n)i, for all

1 ≤ i ≤ k.

7.2.3 Multiple-Sentence Model

As discussed in Chapter 5, one critical weakness of the GFoLDS model in its current form (i.e.

as defined in Chapter 4) is its inability to process multiple sentences at once: the impact of

this limitation is acutely displayed in Chapter 5, in which each premise/hypothesis pair in the

SNLI dataset (Bowman et al., 2015) must be conjoined with an if_x_then token in order to

yield a single graph that can be processed by the model. But this task-specific remedy cannot

be applied to other multiple-sentence NLP benchmarks such as question-answering (e.g.

Rajpurkar et al., 2016), chain-of-thought reasoning (e.g. Wei et al., 2022), etc. If GFoLDS is

214

to be applicable to the same range of tasks as superficial language models, then it is necessary

to overcome this limitation.

Furthermore, the ability to input more than one sentence at a time has the potential to

enrich the context available to the model: when reading a body of text, the ability to recall

(or re-read) earlier sentences in the text is critical to disambiguating and contextualizing the

current sentence. For example, the current GFoLDS model has no mechanism to allow for

the identification of pro-forms with their respective anaphors, beyond anaphora occurring

within a single sentence. Assuming that the model can learn to resolve anaphora with a

reasonable degree of accuracy, feeding it multiple sentences at the same time would allow it to

more effectively learn logical co-occurrence: identifying a given pronoun (for example) with

the predicate P that describes the main referent of the entity to which it refers effectively

increases the amount of contexts (from the perspective of the model) in which P occurs.

To illustrate, consider the following example (duplicated from Chapter 3): “all alligatorsi

are . . . theyi run frequently”, where the spans all alligators and they are located in different

sentences. In its current form, GFoLDS has no way to link they to all alligators, and so the

second half of this example will only serve as an instance of co-occurrence between they and

run frequently. If the multiple-sentence variant of GFoLDS can learn to resolve anaphora,

then the above passage would effectively serve as an instance of co-occurrence between all

alligators and run frequently.

7.2.3.1 Proposed Approach

To modify the architecture of the GFoLDS model to permit it to take multiple sentences

as input, we need look no further than BERT (Devlin et al., 2019). For tasks such as NLI,

the output of the BERT embedding layer E(t, i) for each token t at position i in the input

sequence is defined as in Equation 7.6, where Etok denotes the token embedding layer and

Epos the positional embedding layer.

215

E(t, i) = Etok(t) + Epos(i) + Esent(i) (7.6)

The term Esent denotes the sentence type embedding layer, and Esent(i) returns s⃗1—the

embedding for tokens belonging to the first sentence—if the token at position i is in the first

sentence (e.g. the premise in an NLI task), and s⃗2 otherwise. This is to say that an embedding

identifying the sentence to which the token belongs is added to each token embedding in the

input sequence.

It is fairly straightforward to adapt this approach to GFoLDS: simply add a sentence-

level embedding layer ES to the model’s embedding layer, so that the current embedding

architecture (defined in Chapter 4; duplicated in Equation 7.7a) is modified to that in

Equation 7.7b.

e⃗i = E(ni, G) = ET (ni) + Norm

 ∑
ϕ∈F (ni,G)

EF (ϕ)

 (7.7a)

e⃗k,i = E(nk,i, Gk) = ET (nk,i) + Norm

 ∑
ϕ∈F (nk,i,Gk)

EF (ϕ)

+ ES(k) (7.7b)

Where nk,i and e⃗k,i denote the ith node in the kth input graph and its embedding,

respectively.

Note that BERT’s sentence-level embedding layer only has two possible values: s⃗1 and s⃗2.

This is because each “BERT sentence” can correspond to multiple linguistic sentences—in

the BERT terminology, a “sentence” simply denotes a sequence of tokens. Although the

sentences encoded by the term ES(k) in Equation 7.7b correspond to actual linguistic sentences

(due to the ACE/ERG DMRS parser; see Chapter 4), it is fairly trivial to extend BERT’s

two-sentence embedding method to any number of sentences: simply increase the number of

possible inputs to ES, so that ES is effectively the BERT positional embedding layer (Epos in

Equation 7.6) applied at the sentence level.

216

With a traditional positional embedding layer such as BERT’s, it would be necessary to

choose a fixed number of embeddings us that ES encodes, thereby setting an upper bound on

the amount of sentences that the model can process in a single input sequence—although

us could be set arbitrarily high, effectively limited only be hardware constraints. However,

with more advanced positional encoding techniques—such as rotary embeddings (Su et al.,

2024)—no such limit us is necessary. Regardless, due to hardware constraints, a fixed upper

bound ut on the number of tokens that can be contained within in a given input sequence

must be set, as a sentence can be of any arbitrary length.

Let D = {D1, . . . , Dn} denote the model’s training dataset, consisting of n documents Di:

for example, Wikipedia articles—what is critical is that the sentences within each document are

intended to follow one another. At training time, given a document Di = {Si,1, . . . , Si,m} ∈ D,

select k sentences from Di, subject to the constraints defined in Equation 7.8.

k = max{k̂ | k̂ ≤ m ∧
k̂∑

j=1

|V (Gi,j)| ≤ ut} (7.8)

Then set Di ← {Si,k+1, . . . , Si,m}, and repeat the process laid out above until Di is

exhausted.

As this multi-sentence pretraining procedure is effectively the same as the single-sentence

procedure laid out in Chapter 4—the difference being that the batch elements (i.e. sentences)

can interact with one another—I expect the multi-sentence pretraining time to be roughly

equivalent to that of single-sentence pretraining.

7.2.3.2 Entailment Prediction Objective

As discussed in Chapter 4, the GFoLDS model’s pre-training objective—masked node model-

ing—is based on the masked language modeling (MLM) pre-training objective of encoder

LMs such as BERT (Devlin et al., 2019). In addition to MLM, however, BERT is also

pre-trained with the next sentence prediction (NSP) objective: during pre-training, BERT

is fed pairs of “sentences” (contiguous sequences of text) S1, S2 in the form of the sequence

217

[CLS]S1[SEP]S2, where the [SEP] token separates S1 and S2, and the hidden state of the

[CLS] (classification) token is used for the NSP task. In half of the input examples, S2

immediately follows S1 in a given document in the training corpus, while in the other half,

S2 is a randomly-selected sequence of text: the model is equipped with a small, feed-forward

binary classifier that predicts from the resulting [CLS] embedding whether S2 follows S1

(hence “next sentence prediction”). Note that BERT is pre-trained with the NSP and MLM

objectives simultaneously, and the loss values from both tasks are simply summed together

before backpropagation.

The goal of this NSP objective is “to train a model that understands sentence relationships”

(Devlin et al., 2019). Given the logical-reasoning-oriented nature of GFoLDS, it is sensible to

devise an NSP-like pre-training objective that likewise has a logical-reasoning orientation.

Therefore, I propose to incorporate entailment—rather than next-sentence—prediction as

the secondary pre-training task for the GFoLDS model. Under this approach, the model will

be fed pairs of (graph representations of) sentences G1, G2, where G1 entails G2 in half of

the examples, and G2 is unrelated to G1 in the other half.

Unfortunately, it is significantly more difficult to obtain positive examples for entailment

prediction than for NSP: if it were possible for a given G1 to search through the pre-training

dataset and reliably find some G2 entailed by G1, then the NLI problem would already

be solved. However, while finding positive examples of entailment in the training data is

exceedingly problematic (if not impossible), it is in fact plausible to generate positive examples

using the DMRS graph description language developed by Copestake et al. (2016). This

graph description language effects pattern matching and replacement for DMRS structures:

for example, we can write a rule along the lines of [X give Y to Z] ⇒ [Z get Y from X],

which transforms the DMRS representation of a sentence such as “Kim gave a book to Sandy”

to one corresponding to the sentence “Sandy got a book from Kim” (see Copestake et al.,

2016, Figure 5). This tool should permit automatic generation of entailment examples using

re-write rules to replace words with hypernyms, structures with converse/relational antonyms

218

(e.g. give/get), etc.

Obtaining negative examples is straightforward: simply select some G2 at random from the

data. While there is a chance that this approach will occasionally select a positive example,

the likelihood that there happens to be an entailment relation between two randomly-selected

sentences is presumably exceedingly low.

7.2.4 Hyperbolic Embeddings

Hyperbolic embeddings refer to vector representations in hyperbolic space: a manifold of

constant negative curvature (Tifrea, Becigneul, and Ganea, 2018). Hyperbolic embeddings

are generally modeled as points in n-dimensional manifolds whose underlying sets are subsets

of n-dimensional Euclidean space, such as the Poincaré ball Bn ⊂ Rn, whose underlying

set consists of all points within a distance of one from the origin (Riemann, 1854)—this

use of underlying Euclidean space facilitates the adaptation of traditional machine learning

techniques to hyperbolic applications.

The key difference between hyperbolic and Euclidean space lies in the distance metrics

employed by the respective geometries: in Bn, the distance between two points increases at

an exponential rate relative to their Euclidean distance as the points grow further from the

origin. Hyperbolic embeddings are useful for modeling hierarchical structures such as trees

due to this property, which permits encoding fine-grained differences between sister nodes

in a tree (for example), while still allowing those nodes to be close to their mother node

in the embedding space (see Figure 7.1). Because of their utility for modeling hierarchical

structures, Nickel and Kiela (2017) employ hyperbolic representations to embed the WordNet

(Miller, 1995) noun hierarchy, and demonstrate that hyperbolic embeddings outperform

their Euclidean counterparts in applications such as modeling the transitive closure of the

hyponymy relation.

For this reason, it may be beneficial to incorporate hyperbolic embeddings into the

GFoLDS model. As a consequence of the rule-based nature of the MRS parser, different

219

Figure 7.1: An example of a tree (left) and hyperbolic embeddings of its nodes in the
two-dimensional Poincaré ball B2 (right). Note that despite all three points being equidistant
by the Euclidean metric, d⃗ and e⃗ are further apart from one another than either one is to c⃗
in B2, as d⃗ and e⃗ are further from the origin.

parts of speech occur in distinct contexts in the derived graph representations: nouns have

different features than verbs, quantifier nodes do not have features, etc. In other words,

these MRS-derived graphs are implicitly heterogeneous (Zhang et al., 2019): their nodes

can be sorted into separate, disjoint types—in this case, based on category/part-of-speech.

The masked node modeling pre-training objective will cause any two nodes that occur in

the same broad contexts—i.e. belong to the same category—to be embedded closer to one

another, while more minute differences between the contexts in which any two nodes of the

same category appear—for example, different feature values, different arguments, etc.—will

result in finer-grained distinctions between the nodes’ vector representations. In a Euclidean

setting, this will force any pair of verbs to be within a cosine distance of (for example) 0.8 of

one another, such that cosine distances between verbs range between 0.8 (more dissimilar)

and 1.0 (more similar).

Such minute differences likely present difficulties to the model in learning to represen-

tationally distinguish between nodes of the same category. However, it is clear that the

heterogeneous nature of the derived graph representations induces a hierarchical structure on

the vocabulary: the above-mentioned categories (nouns, verbs, adjectives, quantifiers, etc.)

lay at the top, while increasingly finer-grained distinctions between the respective contexts in

which nodes of the same type occur correspond to a hierarchy of nested, latent sub-categories.

220

Hyperbolic space could provide a natural setting in which GFoLDS can represent this tree-like

hierarchy.

Unfortunately, converting a model from Euclidean to hyperbolic representations is not a

straightforward process: the Euclidean tensors outputted by each layer of the model must be

mapped into hyperbolic space—necessitating a complete re-working of the architecture—and

hyperbolic neural networks require unique loss functions and algorithms for computing their

gradients (i.e. Riemannian Optimization; Ganea, Bécigneul, and Hofmann, 2018).

7.3 The Next Step: Graph-Generative Models

The GFoLDS model described within this dissertation is an encoder model, analogous to

superficial models such as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DeBERTa

(He et al., 2021), ELECTRA (Clark et al., 2021), and so on. However, current, SoTA LLMs

have almost exclusively trended towards generative (i.e. decoder or encoder-decoder) models

in recent years: BART (Lewis et al., 2020), T5 (Raffel et al., 2020), Llama-2/3 (Touvron

et al., 2023; Dubey et al., 2024), GPT-3/4 (Brown et al., 2020; OpenAI, 2023), etc. are all

generative LMs. The text-to-text nature of these models lends the flexibility to accomplish

the classification tasks that encoder models are capable of—for example, by simply generating

the predicted class label—while also allowing the capacity to perform more advanced tasks

such as chain-of-thought reasoning (e.g. Wei et al., 2022), dialogue generation (e.g. Zhang

et al., 2018), summarization (e.g. Nallapati et al., 2016), and even human evaluation tasks

such as the SAT, GRE, and LSAT (OpenAI, 2023).

In Chapter 4, I argued that a graph-to-graph generative model was decidedly outside

of the scope of this work. That being said, the overarching goal of the research program

outlined in this dissertation is to yield a language model over logical forms that can compete

with its superficial counterparts at scale: such a model must have generative capabilities in

order to be able to perform the same range of tasks as current SoTA LLMs.

221

To that end, I dedicate this section to an outline of a proposed generative architecture,

built largely around the GFoLDS model described in Chapter 4, with some (or all) of the

modifications proposed in Section 7.2. I envision this process consisting of three components:

a graph-to-graph model M , a (potentially neural; e.g. Buys and Blunsom, 2017; Lin, Liu,

and Shang, 2022) DMRS parser P , and a DMRS-to-text model P−1 (e.g. Hajdik et al., 2019;

Guo et al., 2019; Zhang et al., 2020b; Wang, Wan, and Jin, 2020; Wang, Wan, and Yao, 2020,

etc.).

Figure 7.2: High-level illustration of the proposed graph-generative pipeline. Black nodes
indicate the input sentence (and corresponding graph representation), while those in blue
denote model-generated graphs and sentences.

The overall pipeline is illustrated in Figure 7.2. The idea is that an input sentence or

sequence of sentences S0 is parsed with P to yield its corresponding DMRS graph G0. The

graph-to-graph model M will then generate a graph G1, conditioned on G0: G0 and G1 can

then be autoregressively fed back to M to yield G2, and so on. This ultimately results in

a sequence of graphs G0, . . . , Gn. For each non-input graph Gi (1 ≤ i ≤ n), we can then

use the graph-to-text model P−1 to generate a corresponding natural language sentence Si,

yielding a sequence of sentences S1, . . . , Sn generated from the input S0.

In Section 7.2.3, I described modifications that would allow GFoLDS to take multiple

graphs as input, which is necessary to condition the generation of Gi on G0, . . . , Gi−1: the

only missing piece of the puzzle is the GFoLDS-derived, graph-generative model M .

222

7.3.1 Background

The idea of neural graph generation is not a novel concept, although the majority of the work

in this area is in the domain of molecule graphs (Zhu et al., 2022). These approaches can be

broadly divided into two categories: one-shot and sequential. One-shot graph generation (e.g.

Flam-Shepherd, Wu, and Aspuru-Guzik, 2020; Du et al., 2022) involves predicting the edges

between a fixed set of input nodes. The key advantage to such approaches is that they do

not introduce the potential inductive bias with respect to node ordering that is inherent in

sequential generation methods. However, they require a predefined node set before generating

edges.

Bresson and Laurent (2019) introduce a middle ground between one-shot and sequential

generation: under their two-step approach, the model first generates a set of nodes in an

autoregressive fashion in step one, then predicts the adjacency matrix—i.e. the edges between

those nodes—in a single pass in step two. Although this method allows for a variable-size

node set while avoiding node-order-related inductive bias, it is not suitable for our purposes.

Consider, for example, a DMRS node set containing two nodes x0, x1 with the same label

(e.g. the_q). As there are no edges between nodes in the first step, both x0 and x1 will recieve

the same representation: namely, the embedding of their label. For any other node z, the

edge predictions between x0 and z will be identical to those between x1 and z.

This indicates that a graph-to-graph generative language model requires sequential

generation. As alluded to above, sequential graph generation (e.g. Liu et al., 2018) involves a

back-and-forth, autoregressive process of predicting one or more nodes, then edges between

them, then predicting additional nodes, and so on. It is not, however, strictly necessary to

generate nodes and edges in separate steps: Bacciu, Micheli, and Podda (2020), Goyal, Jain,

and Ranu (2020), and Bacciu and Podda (2021) employ edge-based generation. Under this

approach, a node x0 is selected, and edges x0 ← xi, x0 → xk—along with the source/target

nodes xi/xk—are autoregressively generated until local stopping conditions are met. The

model then proceeds to the next unvisited node and repeats this edge/node generation

223

procedure, halting once global stopping conditions are reached.

7.3.2 Proposed Architecture

The connected nature of DMRS graphs lends itself to the edge-based sequential generation

procedure desribed in Section 7.3.1: ignoring edge direction, any node in a DMRS graph can

be reached by starting at any other node in the graph. As discussed above, I intend for this

proposed graph-to-graph architecture to be built around the GFoLDS model described in

this dissertation. In order to convert GFoLDS into a generative model, additional, smaller

models that act on GFoLDS’ hidden states are required: an edge direction modelME, an

edge label modelMℓ, and a family of feature value modelsM(–)
F .

Figure 7.3: Illustration of the proposed graph-to-graph generation procedure: generating
G1 (“the man is standing”; bottom) from the input G0 (“the man is lying down”; top)—for
the sake of representational clarity, predicate features are omitted in G0. The bottom image
illustrates the step-by-step generation process for G1: each step is numbered in green in the
lower-left corner. A red, dashed arrow ϕ 99K x indicates that ϕ is a feature of the node x.

As I view graph-to-graph generative models as the next major phase of the research

program laid out in this dissertation, I will describe the generation process via a (somewhat

lengthy) example, which is illustrated in Figure 7.3. Given an input graph G0, G1 begins with

224

a single node n0, whose label is [MASK] (Step 1, Figure 7.3). The underlying GFoLDS model

then predicts a node label ℓ (ℓ = stand_v_1 in Figure 7.3) for n0, and we set label(n0)← ℓ

(Step 2, Figure 7.3).

The features6 for a given DMRS node are entirely determined by its category (part-of-

speech): all verbs have MOOD, TENSE, SF, PROG, and PERF features; all nouns have

NUM and PERS features; etc. Therefore, based on the predicted category for the node

label ℓ (categories are always encoded as a suffix in DMRS node labels), we know the set

of features Fn0 = {ϕ1, . . . , ϕk} whose values must be predicted for n0. For each ϕ ∈ Fn0 ,

we can then predict the value of ϕ for n0 as argmax (M(ϕ)
F (x⃗0)), where x⃗0 is the last hidden

state representation for n0 generated by GFoLDS (Step 3, Figure 7.3). There are only ten

features in DMRS (with 2-5 values each), necessitating ten feed-forward feature-value models

M
(ϕ)
F : Rdmodel → values(ϕ).

We then use the edge-direction modelME : Rdmodel → {←,→, ∅} to predict zero or more

edges into/out of n0 from the hidden state x⃗0. IfME(x⃗0) =→ orME(x⃗0) =←, we add an

edge e = n0 → n1 or e = n0 ← n1 (respectively), set the label of n1 to [MASK], and add n1

to the node stack σ. Letting A denote the set of edge labels (|A| = 8; see Chapter 4), we

use the edge-label model Mℓ : R2dmodel → A to predict an edge label label(e) =Mℓ(x⃗0; x⃗1)

(if e = n0 → n1) or label(e) =Mℓ(x⃗1; x⃗0) (if e = n1 → n0), from the concatenation of the

hidden states for n0 and n1. In Step 4 of Figure 7.3,ME(x⃗0) =→ andMℓ(x⃗0; x⃗1) = ARG1 .

Once ME(x⃗0) = ∅—which indicates that there are no more edges to generate for the

current n0—we pop a new node n0 from the node stack σ, and repeat the process described

above until σ is empty. The generated graph G1 is then returned.

In Figure 7.3, ME(x⃗0) = ∅ is predicted after Step 4, so we pop a new n0 from σ, and

predict its node label man_n_1 (Step 5) and features (Step 6). In Step 7, ME(x⃗0) =←

andMℓ(x⃗1; x⃗0) = RSTR. Then, ME(x⃗0) = ∅, so we pop a new n0 from σ and predict the

label the_q (Step 8). At this point,ME(x⃗0) = ∅ and σ is empty, so generation is terminated
6A detailed description of DMRS node features is presented in Chapter 4.

225

and G1 is returned (Step 9).

Many generative LMs employ a beam search in generation (Sun et al., 2023), where the

model generates k completions (beams) for a given input. At each time step (token) t, the top

n tokens for each beam are selected, yielding nk beams, and the top k most-likely beams—in

terms of the cumulative probabilities of all of their respective tokens—are retained for time

step t+ 1; at the end of the beam search, only the most likely beam is returned.

Li et al. (2023) introduce a transformer that generates intermediate syntax trees in order

to produce text, guided by a structural beam search: an adaptation of the standard beam

search algorithm to non-linear, graph-like generation. This structural beam search could

readily be adapted to the graph-generative procedure described in this section. In addition

to (or separate from) the structural beam search, the pipeline proposed in this section could

leverage prior linguistic knowledge in the form of rules—for example, quantifiers can only be

the source node of RSTR-labeled edges, no node can have more than one outgoing edge with

the same label, etc.—to preemptively eliminate structurally invalid predictions.

7.3.3 Training

The generative model’s pretraining procedure will be implemented along the lines of the

multiple-sentence procedure laid out in Section 7.2.3—i.e. over sequences of graphs G0, . . . , Gn.

The last graph Gn in each sequence will then be treated as the generation target. In order to

create generation-specific training data from Gn, I propose carrying out a breadth-first search

over the underlying undirected graph U(Gn) of Gn, starting at htop(Gn) (see Section 5.3.1.1

of Chapter 5), in order to yield a canonical generation order. Letting E(Gn) denote the edge

set of Gn, this will result in a sequence of graphs G(1)
n , . . . , G

(|E(Gn)|)
n such that G(i)

n is derived

from G
(i−1)
n (2 ≤ i ≤ |E(Gn)|) by adding a single edge, along with its source or target node.

For each sequence of graphs G0, . . . , Gn and each subgraph G(i)
n of Gn, the model will be

trained to predict the label of the masked node in G(i)
n and the unique edge (and edge label)

in G(i+1)
n −G(i)

n , conditioned on G0, . . . , Gn−1, G
(i)
n .

226

Note that the subgraphs G(i)
n of each Gn are in a one-to-one correspondence with the

nodes of Gn: each subgraph G(i)
n adds a single source or target node—and an edge—to G(i−1)

n .

As discussed in Chapter 4, there were an average of ∼28.3 nodes per input graph in GFoLDS’

pretraining data, so we can expect that pretraining the graph-generative model will take

∼28.3 times longer than GFoLDS. GFoLDS’ total pretraining time was 102 hours and 24

minutes7 (again, as discussed in Chapter 4), so we can expect a total pretraining time of

∼2898 hours (∼121 days) for the proposed graph-generative model on the same data.

While 121 days of pretraining time may seem prohibitive, note that the majority of the

work in the graph-to-graph generation procedure proposed in Section 7.3.2 is carried out

by the standard, encoder GFoLDS model. It therefore seems reasonable to assume that

the encoder GFoLDS could be effectively “fine-tuned” for generation: a large part of the

pretraining would be carried out as described in Chapter 4 (and Section 7.2.3), with a small

subset of the pretraining data reserved to train the feed-forward classification heads (ME,

Mℓ, andM(–)
F) and tune GFoLDS. If, for example, we withhold 10% of the pretraining data

for generation, we can expect a total pretraining time of 15 days and 22 hours.

7.4 Discussion

In this chapter, I discussed a wide range of potential applications and modifications to the

GFoLDS model introduced in Chapter 4. In Section 7.1, I described how the current GFoLDS

model (i.e. that introduced in Chapter 4) could be employed in low-resource settings, where

a less data-intensive model such as GFoLDS could permit the more rapid development of

higher-quality LMs.

I then proposed a series of architectural modifications to GFoLDS in Section 7.2, with

the goal of addressing the limitations discussed in Chapters 4-6, and improving the model’s

performance in general: the use of diffusion kernels in the positional encoding module, in

order to address the current model’s inability to encode nodes’ global positions (Section 7.2.1);
7With one NVIDIA A100 GPU.

227

a new embedding layer and prediction head architecture to enable the inclusion of CARGs

and out-of-vocabulary items in the model’s input graphs (Section 7.2.2); a sentence-level

positional embedding layer to allow the model to take multiple sentences as input (Section

7.2.3); and the use of hyperbolic embeddings to better encode the hierarchical structure

induced by DMRS representations (Section 7.2.4).

After the modifications proposed in Section 7.2, the GFoLDS model would still be an

encoder graph transformer—i.e. a graph neural network coupled with a permutation-invariant

encoder transformer (see Chapter 4 and Wu et al., 2021): the embedding layer would have

an additional, linear sentence-level positional embedding component across graphs, but

not within graphs (see Section 7.2.3). Although Section 7.2.2 proposes employing small

transformer models to replace the embedding layer and prediction head, this would effectively

make no difference from the GFoLDS model’s perspective: for each input node ni, GFoLDS

would still receive a vector ET (ni) from the embedding layer, and pass a hidden state hi to

the prediction head. While the diffusion-kernel-based embeddings described in Section 7.2.1

would be an alteration of GFoLDS’ internal architecture—akin to DeBERTa’s (He et al.,

2021) modification of BERT’s positional embedding architecture—this proposed embedding

module is to be built around the existing machinery of the positional encoding network,

rather than replace any of its components.

This is to say that the result of the modifications discussed in Section 7.2 would be a

further iteration of the model introduced in Chapter 4, rather than a radical departure from

that architecture.

Finally, in Section 7.3, I outlined the next major step in the research program of language

modeling over logical forms: graph-to-graph, generative language models: I discussed a

potential pipeline for graph-to-graph generation, a step-by-step example of the proposed

generation architecture, and the planned pretraining procedure of this model (and the

computational feasibility thereof). The successful realization of such an architecture represents

a fundamental goal in the development of language models over logical forms, as it would

228

allow their application to a much wider range of tasks, thereby bridging the current gap in

utility between these models and their superficial counterparts.

229

Chapter 8

Conclusion

In this dissertation, I made the case for language models over logical forms by both theoretical

and empirical means. With the GFoLDS model motivated in Chapters 2-3 and introduced in

Chapter 4, this dissertation accomplished the two major goals set in Section 1.2 of Chapter 1.

The first objective was to demonstrate the validity of the Accelerated Learning Hypothesis

(ALH): specifically, I showed that the aspects of linguistic knowledge incorporated into

linguistically-informed LMs obviates the need to learn elementary linguistic phenomena,

allowing them to immediately begin learning more complex patterns (see Chapter 6), which in

turn leads to linguistically-informed LMs’ ability to learn from less data than their superficial

counterparts (see Chapter 5). The successful achievement of this objective is of importance

to the field of Language AI, as the ALH—along with the empirical evidence towards its

validity presented in this dissertation—indicates that the use of language models over logical

forms provides the means to overcome the impeding shortage of LLM training data—and

subsequent slowing of the rate of improvement of LLMs—that is predicted to occur in the

near future (Villalobos et al., 2024; as discussed in Chapter 1).

Furthermore, the evidence in support of the ALH that I presented in this dissertation

provides meaningful insight into the reasons behind the performance gains exhibited by

linguistically-informed and -augmented LMs (e.g. Xu et al., 2021; Sachan et al., 2021; Zhou

230

et al., 2020; Zhang et al., 2020c; Wu, Peng, and Smith, 2021; Prange, Schneider, and Kong,

2022, etc.; see the discussion in Chapters 1 and 4), which itself is an important finding in the

fields of Linguistics and Machine Learning.

The accomplishment of second objective of this dissertation—a proof-of-concept of the

viability of language models over logical forms—paved the way for the practical implementation

of such models, and introduced the research program of language modeling over logical forms.

In Chapter 1, I divided this goal into two subordinate objectives: demonstrations of the (i)

feasibility and (ii) utility (i.e. downstream applicability) of language models over logical forms.

While the GFoLDS model definitively demonstrated the feasibility of language models over

logical forms, a demonstration of some aspects of the utility of such models was left to future

work. Specifically, GFoLDS’ problematic positional encoding module (see Chapter 6), and its

inability to take multiple sentences as input and to incorporate CARGs and out-of-vocabulary

items (see Chapters 4-5), limit its downstream applicability. However, I suggested feasible

modifications to the model’s architecture that can plausibly overcome these limitations (see

Chapter 7), as discussed in Chapter 1.

8.1 Findings and Contributions

In this section, I summarize the major findings and contributions of each of the main chapters

(i.e. Chapters 2-7) of this dissertation.

Chapter 2 provided an experimental paradigm—which has further applications outside of

the scope of this dissertation—for evaluating language models’ logical reasoning abilities. In

this chapter, I found that superficial NLI models learn to treat the external negation prefix

“it is not true that” as a distractor when initially fine-tuned on common NLI datasets; that

DeBERTa (He et al., 2021) and BART (Lewis et al., 2020) models are incapable of learning

to inductively generalize the law of the excluded middle, despite extensive fine-tuning; and

that the RoBERTa models (Liu et al., 2019) that did manage to grasp the function of the

231

prefix “it is not true that” failed to generalize this pattern to the highly similar prefix “it

is false that”. In addition to motivating the use of language models over logical forms by

exposing a major weakness of superficial NLI models, the findings of Chapter 2 provided

further support to existing work in the literature (e.g. McCoy, Pavlick, and Linzen, 2019;

Chien and Kalita, 2020; Richardson et al., 2020; Niven and Kao, 2019; Naik et al., 2018;

Yuan et al., 2023, etc.) indicating that language models leverage shallow heuristics to achieve

their remarkable performance on logical reasoning tasks.

In Chapter 3, I introduced the non-neural FoLDS model, a prototype language model

over logical forms. FoLDS demonstrated the feasibility of language modeling over logical

forms, and outperformed almost all competing superficial approaches on the McRae et al.

(2005) property inference database, thereby providing empirical evidence in support of the

Accelerated Learning Hypothesis (ALH). Chapter 3 also included further arguments in support

of the ALH, positing that the use of logical form inputs yields a syntactic de-noising effect,

so that (for example) an active sentence and its passive counterpart are equivalence-classed.

In Chapter 4, I used the limitations of the FoLDS model—namely, its static, complex-

valued count-vector embeddings—and an analysis of the existing literature on the use of

graph neural networks in NLP to motivate the graph-transformer-based (Wu et al., 2021)

GFoLDS model. I then pretrained GFoLDS on automatically-parsed graph representations of

logical forms, thereby demonstrating the viability of this model.

Chapter 5 focused on a demonstration of the utility of GFoLDS: I evaluated the model

against BERT—both the original models and comparison variants pretrained on the same

amount of data as GFoLDS—on the RELPRON (Rimell et al., 2016), SNLI (Bowman et al.,

2015), MegaVeridicality V2.1 (White et al., 2018), and McRae et al. (2005) benchmarks.

GFoLDS’ applicability to these tasks—in particular, the SNLI benchmark—displayed the

vastly improved utility of this model over that of the FoLDS model introduced in Chapter 3.

As GFoLDS massively outperformed the BERT comparison models on all four evaluation

tasks, the results of this chapter additionally provided strong evidence towards the validity of

232

the ALH. This in turn constitutes strong evidence in support of the use of language models

over logical forms as a plausible avenue for continuing the improvement of language models

at a more sustainable rate of data consumption than superficial LLMs.

In Chapter 6, I evaluated the scalability of GFoLDS, and found that this model is likely

to scale in terms of parameter count and pretraining data. This result is a step forward in

the research program of language modeling over logical forms, as it suggests that such models

have the potential to compete with superficial LMs at scale. Furthermore, I provided direct

empirical evidence towards the validity of the ALH in Chapter 6, demonstrating that GFoLDS

maintains near-peak performance on two elementary probing tasks throughout pretraining,

while the BERT comparison models do not even begin to improve on the elementary tasks

until halfway through the first pretraining epoch. Critically, the results of this experiment

also indicated that GFoLDS’ built-in elementary linguistic knowledge likely facilitates the

model’s performance on more complex tasks: GFoLDS immediately began improving on the

RELPRON test set, while the BERT models did not begin to see progress until halfway

through the first epoch—roughly the same point at which they began improving on the

elementary tasks.

However, Chapter 6 also uncovered a severe limitation of the GFoLDS model’s positional

encoding module, which impairs the model’s ability to count long sequences of repeated

nodes—which is critical for the negation-cancellation task of Chapter 2—and determine

the sentence to which a given node belongs, potentially presenting a serious impediment to

GFoLDS’ performance on NLI tasks.

In Chapter 7, I used the limitations of GFoLDS uncovered in Chapters 4-6 to inform future

directions in the development of language models over logical forms. In particular, I proposed

a plausible remedy for the GFoLDS model’s flawed positional encoding module, along with

architectural modifications intended to overcome its inability to take multiple sentences as

input, and to include CARGs and out-of-vocabulary items in its graph representations. I

furthermore discussed an additional, yet-to-be-explored application of the current GFoLDS

233

model—namely, its use for lower-resource languages—and laid out a proposal for the next

major phase of the research program of language models over logical forms: graph-to-graph

generative models.

8.2 Limitations

I extensively described the limitations of the FoLDS and GFoLDS models in Chapters 2

and 6 (respectively): I instead dedicate this section to a discussion of the limitations of the

research and findings of this dissertation in general.

Although the results of Chapter 5 demonstrate that GFoLDS can massively outperform

superficial models on lexical and one-to-two-sentence tasks, we cannot definitively extrapolate

from these results to assert that this advantage of language models over logical forms will

carry over to multi-sentence tasks such as question-answering. It is likewise uncertain whether,

after the modifications to GFoLDS proposed in Chapter 7 that are intended to overcome

the limitations uncovered in Chapters 4-6, the model will retain the same advantages over

superficial LMs that its current incarnation enjoys.

In a similar vein, it is not clear if the benefits of the GFoLDS model—or the Accelerated

Learning Hypothesis—will transfer to the graph-to-graph generative model proposed in

Chapter 7. Although Prange, Schneider, and Kong’s (2022) linguistically-augmented GPT-2

(Radford et al., 2018) model (discussed in Chapters 1 and 4) suggests that the advantages of

linguistic-knowledge-injection do in fact carry over to the generative setting, their findings

are not guaranteed to transfer to a model purely over logical forms.

This discussion highlights the necessity of further research into language models over

logical forms, in order to confirm the viability of such models as a replacement for superficial

LMs, as is indicated by the findings of this dissertation.

234

Bibliography

Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.;

Willmore, L.; Ballard, A. J.; Bambrick, J.; Bodenstein, S. W.; Evans, D. A.; Hung, C.-C.;

O’Neill, M.; Reiman, D.; Tunyasuvunakool, K.; Wu, Z.; Žemgulytė, A.; Arvaniti, E.;

Beattle, C.; Bertolli, O.; Bridgland, A.; Cherepanov, A.; Congreve, M.; Cowen-Rivers,

A. I.; Cowie, A.; Figurnov, M.; Fuchs, F. B.; Gladman, H.; Jain, Y. A.; Low, C. M. R.;

Perlin, K.; Potapenko, A.; Savy, P.; Singh, S.; Stecula, A.; Thillaisundaram, A.; Tong,

C.; Yakneed, S.; Zhong, E. D.; Zielinski, M.; Žídek, A.; Bapst, V.; Kohli, P.; Jaderberg,

M.; Hassabis, D.; and Jumper, J. M. 2024. Accurate Structure Prediction of Biomolecular

Interactions with AlphaFold 3. Nature, 1–3.

Adger, D.; and Harbour, D. 2008. Why Phi. Phi-theory: Phi-features across Modules and

Interfaces, 1–34.

Aerts, S.; Kitto, K.; and Sitbon, L. 2011. Similarity Metrics within a Point of View. In

Quantum Interaction: 5th International Symposium, 13–24.

Arvind, V.; Köbler, J.; Rattan, G.; and Verbitsky, O. 2015. On the Power of Color Refinement.

In Fundamentals of Computation Theory: 20th International Symposium, 339–350.

Asai, A.; and Hajishirzi, H. 2020. Logic-Guided Data Augmentation and Regularization

for Consistent Question Answering. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, 5642–5650.

235

Bacciu, D.; Micheli, A.; and Podda, M. 2020. Edge-Based Sequential Graph Generation with

Recurrent Neural Networks. Neurocomputing, 416: 177–189.

Bacciu, D.; and Podda, M. 2021. GraphGen-Redux: A Fast and Lightweight Recurrent

Model for Labeled Graph Generation. In 2021 International Joint Conference on Neural

Networks, 1–8.

Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt, K.; Hermjakob, U.; Knight, K.;

Koehn, P.; Palmer, M.; and Schneider, N. 2013. Abstract Meaning Representation for

Sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability

with Discourse, 178–186.

Barklund, J. 1994. Bounded Quantifications for Iteration and Concurrency in Logic Program-

ming. New Generation Computing, 12: 161–182.

Bassey, J.; Qian, L.; and Li, X. 2021. A Survey of Complex-Valued Neural Networks. arXiv

preprint arXiv:2101.12249.

Beck, D.; Haffari, G.; and Cohn, T. 2018. Graph-to-Sequence Learning using Gated Graph

Neural Networks. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 273–283.

Belinkov, Y.; and Glass, J. 2019. Analysis Methods in Neural Language Processing: A Survey.

Transactions of the Association for Computational Linguistics, 7: 49–72.

BNC. 2007. The British National Corpus, Version 3. Distributed by Bodleian Libraries,

University of Oxford, on behalf of the BNC Consortium.

Boleda, G.; and Herbelot, A. 2016. Formal Distributional Semantics: Introduction to the

Special Issue. Computational Linguistics, 42: 619–635.

Borji, A. 2023. A Categorical Archive of ChatGPT Failures. arXiv preprint arXiv:2302.03494.

236

Bos, J. 2011. A Survey of Computational Semantics: Representation, Inference and Knowledge

in Wide-Coverage Text Understanding. Language and Linguistics Compass, 5: 336–366.

Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D. 2015. A Large Annotated Corpus

for Learning Natural Language Inference. arXiv preprint arXiv:1508.05326.

Brachman, R. J.; and Schmolze, J. G. 1989. An Overview of the KL-ONE Knowledge

Representation System. Readings in Artificial Intelligence and Databases, 207–230.

Bresson, X.; and Laurent, T. 2019. A Two-Step Graph Convolutional Decoder for Molecule

Generation. arXiv preprint arXiv:1906.03412.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.; Dhariwal, P.; Neelakantan, A.;

Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,

T.; Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler,

E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.;

Sutskever, I.; and Amodei, D. 2020. Language Models are Few-Shot Learners. In Advances

in Neural Information Processing Systems, 1877–1901.

Buys, J.; and Blunsom, P. 2017. Robust Incremental Neural Semantic Graph Parsing. In

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), 1215–1226.

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; and Zagoruyko, S. 2020.

End-to-End Object Detection with Transformers. In European Conference on Computer

Vision, 213–229.

Caruana, R.; Lawrence, S.; and Giles, C. 2000. Overfitting in Neural Nets: Backpropagation,

Conjugate Gradient, and Early Stopping. Advances in Neural Information Processing

Systems, 13.

237

Chami, I.; Abu-El-Haija, S.; Perozzi, B.; Ré, C.; and Murphy, K. 2022. Machine Learning on

Graphs: A Model and Comprehensive Taxonomy. Journal of Machine Learning Research,

23(89): 1–64.

Chaves, R. P.; and Richter, S. N. 2021. Look at That! BERT Can Be Easily Distracted

from Paying Attention to Morphosyntax. Proceedings of the Society for Computation in

Linguistics, 4(1): 28–38.

Chiang, D.; Cholak, P.; and Pillay, A. 2023. Tighter Bounds on the Expressivity of Transformer

Encoders. In Proceedings of the International Conference on Machine Learning.

Chien, T.; and Kalita, J. 2020. Adversarial Analysis of Natural Language Inference Systems.

In 2020 IEEE 14th International Conference on Semantic Computing (ICSC), 1–8.

Cho, K. 2014. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical

Machine Translation. arXiv preprint arXiv:1406.1078.

Choromanski, K. M.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins,

P.; Davis, J. Q.; Mohiuddin, A.; Kaiser, L.; Belanger, D. B.; Colwell, L. J.; and Weller,

A. 2021. Rethinking Attention with Performers. In International Conference on Learning

Representations.

Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D. 2021. ELECTRA: Pre-training

Text Encoders as Discriminators Rather Than Generators. In International Conference on

Learning Representations.

Colin, E.; and Gardent, C. 2018. Generating Syntactic Paraphrases. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, 937–943.

Copestake, A. 2009. Slacker Semantics: Why Superficiality, Dependency and Avoidance of

Commitment Can be the Right Way to Go. In Proceedings of the 12th Conference of the

European Chapter of the ACL (EACL 2009), 1–9.

238

Copestake, A.; Emerson, G.; Goodman, M. W.; Horvat, M.; Kuhnle, A.; and Muszyńska, E.

2016. Resources for Building Applications with Dependency Minimal Recursion Semantics.

In Proceedings of the Tenth International Conference on Language Resources and Evaluation

(LREC’16), 1240–1247.

Copestake, A.; Flickinger, D.; Pollard, C.; and Sag, I. A. 2005. Minimal Recursion Semantics:

An Introduction. Research on Language and Computation, 3: 281–332.

Copestake, A. A.; and Flickinger, D. 2000. An Open Source Grammar Development Environ-

ment and Broad-coverage English Grammar Using HPSG. In LREC, 591–600.

Cramer, B.; and Zhang, Y. 2009. Construction of a German HPSG Grammar from a Detailed

Treebank. In Proceedings of the Workshop on Grammar Engineering Across Frameworks

(GEAF), 37–45.

Darwiche, A. 2001. Decomposable Negation Normal Form. Journal of the ACM (JACM), 48:

608–647.

DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. arXiv:2412.19437.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.;

Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. 2020. An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929.

Dowty, D. 1989. On the Semantic Content of the Notion of ‘Thematic Role’. Properties,

Types and Meaning, 2.

Dowty, D. 1991. Thematic Proto-Roles and Argument Selection. Language, 67: 547–619.

239

Du, Y.; Guo, X.; Cao, H.; Ye, Y.; and Zhao, L. 2022. Disentangled Spatiotemporal Graph

Generative Models. In Proceedings of the AAAI Conference on Artificial Intelligence,

6541–6549.

Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.; Letman, A.; Mathur, A.;

Schelten, A.; Yang, A.; Fan, A.; et al. 2024. The Llama 3 Herd of Models. arXiv preprint

arXiv:2407.21783.

Dwivedi, V. P.; and Bresson, X. 2020. A Generalization of Transformer Networks to Graphs.

arXiv preprint arXiv:2012.09699.

Dwivedi, V. P.; Joshi, C. K.; Luu, A. T.; Laurent, T.; Bengio, Y.; and Bresson, X. 2023.

Benchmarking Graph Neural Networks. Journal of Machine Learning Research, 24(43):

1–48.

Elman, J. L. 1990. Finding Structure in Time. Cognitive Science, 14: 179–211.

Emerson, G. 2018. Functional Distributional Semantics: Learning Linguistically Informed

Representations from a Precisely Annotated Corpus. Ph.D. thesis, University of Cambridge.

Emirkanian, L.; Da Sylva, L.; and Bouchard, L. H. 1996. The Implementation of a Computa-

tional Grammar of French using the Grammar Development Environment. In COLING:

The 16th International Conference on Computational Linguistics.

Erk, K. 2016. What Do You Know about an Alligator when You Know the Company It

Keeps? Semantics and Pragmatics, 9: 17–1.

Ettinger, A. 2020. What BERT Is Not: Lessons from a New Suite of Psycholinguistic

Diagnostics for Language Models. Transactions of the Association for Computational

Linguistics, 8: 34–48.

Ferraresi, A.; Zanchetta, E.; Baroni, M.; and Bernardini, S. 2008. Introducing and Evaluating

240

ukWaC, a Very Large Web-Derived Corpus of English. In Proceedings of the 4th Web as

Corpus Workshop (WAC-4) Can We Beat Google, 47–54.

Fine, K. 2014. Truth-Maker Semantics for Intuitionistic Logic. Journal of Philosophical Logic,

43: 549–577.

Flam-Shepherd, D.; Wu, T.; and Aspuru-Guzik, A. 2020. Graph Deconvolutional Generation.

arXiv preprint arXiv:2002.07087.

Fyodorov, Y.; Winter, Y.; and Francez, N. 2000. A Natural Logic Inference System. In

Proceedings of the 2nd Workshop on Inference in Computational Semantics (ICoS-2).

Ganea, O.; Bécigneul, G.; and Hofmann, T. 2018. Hyperbolic Neural Networks. Advances in

Neural Information Processing Systems, 31.

Godbole, V.; Dahl, G. E.; Gilmer, J.; Shallue, C. J.; and Nado, Z. 2023. Deep Learning

Tuning Playbook. Version 1.0.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville,

A.; and Bengio, Y. 2014. Generative Adversarial Nets. Advances in Neural Information

Processing Systems, 27.

Goodman, M. W. 2019. A Python Library for Deep Linguistic Resources. In 2019 Pacific

Neighborhood Consortium Annual Conference and Joint Meetings (PNC). Singapore.

Goodman, M. W. 2020. Penman: An Open-Source Library and Tool for AMR Graphs. In

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics:

System Demonstrations, 312–319.

Goyal, N.; Jain, H. V.; and Ranu, S. 2020. GraphGen: A Scalable Approach to Domain-

Agnostic Labeled Graph Generation. In Proceedings of The Web Conference 2020, 1253–

1263.

241

Graff, D.; and Cieri, C. 2003. English Gigaword Corpus. Linguistic Data Consortium.

Granziol, D.; Zohren, S.; and Roberts, S. 2022. Learning Rates as a Function of Batch Size:

A Random Matrix Theory Approach to Neural Network Training. Journal of Machine

Learning Research, 23(173): 1–65.

Grefenstette, E.; and Sadrzadeh, M. 2011. Experimental Support for a Categorical Com-

positional Distributional Model of Meaning. In Proceedings of the 2011 Conference on

Empirical Methods in Natural Language Processing, 1394–1404.

Grefenstette, E.; Sadrzadeh, M.; Clark, S.; Coecke, B.; and Pulman, S. 2014. Concrete

Sentence Spaces for Compositional Distributional Models of Meaning. In Computing

Meaning, 71–86. Springer.

Guo, Z.; Zhang, Y.; and Lu, W. 2019. Attention Guided Graph Convolutional Networks

for Relation Extraction. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, 241–251.

Guo, Z.; Zhang, Y.; Teng, Z.; and Lu, W. 2019. Densely Connected Graph Convolutional Net-

works for Graph-to-Sequence Learning. Transactions of the Association for Computational

Linguistics, 7: 297–312.

Habernal, I.; Wachsmuth, H.; Gurevych, I.; and Stein, B. 2018. SemEval-2018 Task 12:

The Argument Reasoning Comprehension Task. In Proceedings of the 12th International

Workshop on Semantic Evaluation, 763–772.

Hajdik, V.; Buys, J.; Goodman, M. W.; and Bender, E. M. 2019. Neural Text Generation

from Rich Semantic Representations. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2259–2266.

242

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive Representation Learning on Large

Graphs. Advances in Neural Information Processing Systems, 30.

Hanin, B. 2018. Which Neural Net Architectures Give Rise to Exploding and Vanishing

Gradients? Advances in Neural Information Processing Systems, 31.

He, F.; Liu, T.; and Tao, D. 2020. Why ResNet Works? Residuals Generalize. IEEE

Transactions on Neural Networks and Learning Systems, 31(12): 5349–5362.

He, P.; Liu, X.; Gao, J.; and Chen, W. 2021. DeBERTa: Decoding-enhanced BERT with

Disentangled Attention. In International Conference on Learning Representations.

Hendrycks, D.; and Gimpel, K. 2016. Gaussian Error Linear Units (GELUs). arXiv preprint

arXiv:1606.08415.

Herbelot, A.; and Copestake, A. 2021. Ideal Words: a Vector-Based Formalisation of Semantic

Competence. Künstliche Intelligenz, 35: 271–290.

Herbelot, A.; and Vecchi, E. M. 2015. Building a Shared World: Mapping Distributional to

Model-Theoretic Semantic Spaces. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, 22–32.

Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.;

and Lerchner, A. 2017. Beta-VAE: Learning Basic Visual Concepts with a Constrained

Variational Framework. In International Conference on Learning Representations.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term Memory. Neural Computation,

9(8): 1735–1780.

Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.; Cai, T.; Rutherford, E.; Casas,

D. d. L.; Hendricks, L. A.; Welbl, J.; Clark, A.; Hennigan, T.; Noland, E.; Millican, K.;

van den Driessche, G.; Damoc, B.; Guy, A.; Osindero, S.; Simonyan, K.; Elsen, E.; Rae,

243

J. W.; Vinyals, O.; and Sifre, L. 2022. Training Compute-Optimal Large Language Models.

arXiv preprint arXiv:2203.15556.

Hossain, M. M.; Kovatchev, V.; Dutta, P.; Kao, T.; Wei, E.; and Blanco, E. 2020. An Analysis

of Natural Language Inference Benchmarks through the Lens of Negation. In Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

9106–9118.

Hosseini, A.; Reddy, S.; Bahdanau, D.; Hjelm, R. D.; Sordoni, A.; and Courville, A. 2021.

Understanding by Understanding Not: Modeling Negation in Language Models. In

Proceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 1301–1312.

Hovda, P. 2009. What is Classical Mereology? Journal of Philosophical Logic, 38: 55–82.

Hu, Y.; Shen, H.; Liu, W.; Min, F.; Qiao, X.; and Jin, K. 2021. A Graph Convolutional

Network With Multiple Dependency Representations for Relation Extraction. IEEE Access,

9: 81575–81587.

Huber, P. J. 1964. Robust Estimation of a Location Parameter. The Annals of Mathematical

Statistics, 35(1).

Huebner, P. A.; Sulem, E.; Cynthia, F.; and Roth, D. 2021. BabyBERTa: Learning More

Grammar With Small-Scale Child-Directed Language. In Proceedings of the 25th Conference

on Computational Natural Language Learning, 624–646.

Immerman, N. 2012. Descriptive Complexity. Springer Science & Business Media.

Jacobsen, M.; Sørensen, M. H.; and Derczynski, L. 2021. Optimal Size-Performance Tradeoffs:

Weighing POS Tagger Models. arXiv preprint arXiv:2104.07951.

Jang, M.; Kwon, D. S.; and Lukasiewicz, T. 2022. BECEL: Benchmark for Consistency

244

Evaluation of Language Models. In Proceedings of the 29th International Conference on

Computational Linguistics, 3680–3696.

Johns, B. T.; and Jones, M. N. 2012. Perceptual Inference through Global Lexical Similarity.

Topics in Cognitive Science, 4: 103–120.

Jones, C. R.; Chang, T. A.; Coulson, S.; Michaelov, J. A.; Trott, S.; and Bergen, B. 2022.

Distrubutional Semantics Still Can’t Account for Affordances. In Proceedings of the Annual

Meeting of the Cognitive Science Society, 44.

Kassner, N.; and Schütze, H. 2020. Negated and Misprimed Probes for Pretrained Language

Models: Birds Can Talk, But Cannot Fly. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, 7811–7818.

Khot, T.; Sabharwal, A.; and Clark, P. 2018. SciTaiL: A Textual Entailment Dataset from

Science Question Answering. Proceedings of the AAAI Conference on Artificial Intelligence,

32(1): 81575–81587.

Kim, J.-H.; On, K.-W.; Lim, W.; Kim, J.; Ha, J.-W.; and Zhang, B.-T. 2016. Hadamard

Product for Low-Rank Bilinear Pooling. arXiv preprint arXiv:1610.04325.

Kingma, D. P.; and Ba, J. 2014. Adam: A Method for Stochastic Optimization. arXiv

preprint arXiv:1412.6980.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classification with Graph Convolutional

Networks. In International Conference on Learning Representations.

Kitaev, N.; Kaiser, L.; and Levskaya, A. 2020. Reformer: The Efficient Transformer. In

International Conference on Learning Representations.

Kondor, R. I.; and Lafferty, J. D. 2002. Diffusion Kernels on Graphs and Other Discrete

Input Spaces. In Proceedings of the 19th International Conference on Machine Learning,

315–322.

245

Kubota, Y. 2010. (In)flexibility of Constituency in Japanese in Multi-Modal Categorial

Grammar with Structured Phonology. Ph.D. thesis, The Ohio State University.

Kubota, Y.; and Levine, R. D. 2020. Type-Logical Syntax. MIT Press.

Kuhn, H. W. 1955. The Hungarian Method for the Assignment Problem. Naval Research

Logistics Quarterly, 2: 83–97.

Larrivée, P. 2016. The Markedness of Double Negation. Negation and Polarity: Experimental

Perspectives, 177–198.

Laverghetta Jr., A.; and Licato, J. 2022. Developmental Negation Processing in Transformer

Language Models. In Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 545–551.

Laverghetta Jr., A.; Nighojkar, A.; Mirzakhalov, J.; and Licato, J. 2021. Can Transformer

Language Models Predict Psychometric Properties? In Proceedings of *SEM 2021: The

Tenth Joint Conference on Lexical and Computational Semantics, 12–25.

LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; and Jackel,

L. 1989. Handwritten Digit Recognition with a Back-Propagation Network. Advances in

Neural Information Processing Systems, 2.

Leman, A.; and Weisfeiler, B. 1968. A Reduction of a Graph to a Canonical Form and an

Algebra Arising during this Reduction. Nauchno-Technicheskaya Informatsiya, 2(9): 12–16.

Lenci, A. 2018. Distributional Models of Word Meaning. Annual Review of Linguistics, 4:

151–171.

Levi, F. W. 1942. Finite Geometrical Systems.

Levy, E.; and Nelson, K. 1994. Words in Discourse: A Dialectical Approach to the Acquisition

of Meaning and Use. Journal of Child Language, 21: 367–389.

246

Lewis, D. 1976. General Semantics. In Montague Grammar, 1–50. Elsevier.

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; and

Zettlemoyer, L. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 7871–7880.

Li, H. 2022. Language Models: Past, Present, and Future. Communications of the ACM,

65(7): 56–63.

Li, Y.; Cui, L.; Yan, J.; Yin, Y.; Bi, W.; Shi, S.; and Zhang, Y. 2023. Explicit Syntactic

Guidance for Neural Text Generation. In Proceedings of the 61st Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), 14095–14112.

Li, Y.; Zemel, R.; Brockschmidt, M.; and Tarlow, D. 2016. Gated Graph Sequence Neural

Networks. In Proceedings of ICLR’16.

Lim, D.; Robinson, J. D.; Zhao, L.; Smidt, T.; Sra, S.; Maron, H.; and Jegelka, S. 2023.

Sign and Basis Invariant Networks for Spectral Graph Representation Learning. In The

Eleventh International Conference on Learning Representations.

Lin, B. Y.; Chen, X.; Chen, J.; and Ren, X. 2019. KagNet: Knowledge-Aware Graph Networks

for Commonsense Reasoning. In Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), 2829–2839.

Lin, Z.; Liu, J. Z.; and Shang, J. 2022. Towards Collaborative Neural-Symbolic Graph

Semantic Parsing via Uncertainty. In Findings of the Association for Computational

Linguistics: ACL 2022, 4160–4173.

Liu, N. F.; Schwartz, R.; and Smith, N. A. 2019. Inoculation by Fine-Tuning: A Method

for Analyzing Challenge Datasets. In Proceedings of the 2019 Conference of the North

247

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2171–2179.

Liu, Q.; Allamanis, M.; Brockschmidt, M.; and Gaunt, A. 2018. Constrained Graph Variational

Autoencoders for Molecule Design. Advances in Neural Information Processing Systems,

31.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.;

and Stoyanov, V. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

arXiv preprint arXiv:1907.11692.

Lo, C. H.; Cheng, H.; Lam, W.; and Emerson, G. 2023. Functional Distributional Semantics at

Scale. In Proceedings of the 12th Joint Conference on Lexical and Computational Semantics

(*SEM 2023), 423–436.

Lopez, V.; Motta, E.; Uren, V.; and Sabou, M. 2007. State of the Art on Semantic Question

Answering.

Loshchilov, I.; and Hutter, F. 2016. SGDR: Stochastic Gradient Descent with Warm Restarts.

arXiv preprint arXiv:1608.03983.

Loshchilov, I.; and Hutter, F. 2017. Decoupled Weight Decay Regularization. arXiv preprint

arXiv:1711.05101.

Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; and Adjouadi, M. 2019. A

Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images.

Signal Processing, 157: 236–260.

Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S. J.; and McClosky, D.

2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Association for

Computational Linguistics (ACL) System Demonstrations, 55–60.

248

Mao, A.; Mohri, M.; and Zhong, Y. 2023. Cross-Entropy Loss Functions: Theoretical Analysis

and Applications. In International Conference on Machine Learning, 23803–23828.

Marcus, M.; and Moyls, B. 1959. Transformations on Tensor Product Spaces. Pacific Journal

of Mathematics, 9: 1215–1221.

McCoy, T.; Pavlick, E.; and Linzen, T. 2019. Right for the Wrong Reasons: Diagnosing

Syntactic Heuristics in Natural Language Inference. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 3428–3448.

McRae, K.; Cree, G. S.; Seidenberg, M. S.; and McNorgan, C. 2005. Semantic Feature

Production Norms for a Large Set of Living and Nonliving Things. Behavior Research

Methods, 37(4): 547–559.

Mialon, G.; Chen, D.; Selosse, M.; and Mairal, J. 2021. GraphiT: Encoding Graph Structure

in Transformers. arXiv preprint arXiv:2106.05667.

Miller, G. A. 1995. WordNet: a Lexical Database for English. Communications of the ACM,

38(11): 39–41.

Mitsuishi, Y.; Torisawa, K.; and Tsujii, J. 1998. HPSG-Style Underspecified Japanese Gram-

mar with Wide Coverage. In 36th Annual Meeting of the Association for Computational

Linguistics and 17th International Conference on Computational Linguistics, Volume 2,

876–880.

Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen, J. E.; Rattan, G.; and Grohe,

M. 2019. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, 4602–4609.

Muennighoff, N.; Rush, A.; Barak, B.; Le Scao, T.; Tazi, N.; Piktus, A.; Pyysalo, S.; Wolf, T.;

and Raffel, C. A. 2024. Scaling Data-Constrained Language Models. Advances in Neural

Information Processing Systems, 36.

249

Muszynska, E. 2020. Semantic Chunking. Ph.D. thesis, University of Cambridge.

Naik, A.; Ravichander, A.; Sadeh, N.; Rose, C.; and Neubig, G. 2018. Stress Test Evaluation

for Natural Language Inference. In Proceedings of the 27th International Conference on

Computational Linguistics, 2340–2353.

Nallapati, R.; Zhou, B.; dos Santos, C.; Gu̇lçehre, Ç.; and Xiang, B. 2016. Abstractive Text

Summarization Using Sequence-to-Sequence RNNs and Beyond. In Proceedings of the 20th

SIGNLL Conference on Computational Natural Language Learning, 280–290.

Nan, G.; Guo, Z.; Sekulic, I.; and Lu, W. 2020. Reasoning with Latent Structure Refinement

for Document-Level Relation Extraction. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, 1546–1557.

Nguyen, X.-P.; Joty, S.; Hoi, S.; and Socher, R. 2020. Tree-Structured Attention with

Hierarchical Accumulation. In International Conference on Learning Representations.

Nickel, M.; and Kiela, D. 2017. Poincaré Embeddings for Learning Hierarchical Representa-

tions. Advances in Neural Information Processing Systems, 30.

Nie, Y.; Williams, A.; Dinan, E.; Bansal, M.; Weston, J.; and Kiela, D. 2020. Adversarial

NLI: A New Benchmark for Natural Language Understanding. In Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, 4885–4901.

Niven, T.; and Kao, H.-Y. 2019. Probing Neural Network Comprehension of Natural Language

Arguments. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, 4658–4664.

Nocedal, J. 1980. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of

Computation, 35(151): 773–782.

Oepen, S.; and Lønning, J. T. 2006. Discriminant-based MRS Banking. In LREC, 1250–1255.

250

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.

Patalano, A. L.; Wengrovitz, S. M.; and Sharpes, K. M. 2009. The Influence of Category

Coherence on Inference about Cross-Classified Entities. Memory and Cognition, 37: 21–28.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: Online Learning of Social Represen-

tations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 701–710.

Piantadosi, S.; and Hill, F. 2022. Meaning without Reference in Large Language Models. In

NeurIPS Workshop on Neuro Causal and Symbolic AI (nCSI).

Plenz, M.; and Frank, A. 2024. Graph Language Models. arXiv preprint arXiv:2401.07105.

Prange, J.; Schneider, N.; and Kong, L. 2022. Linguistic Frameworks Go Toe-to-Toe at

Neuro-Symbolic Language Modeling. In Proceedings of the 2022 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 4375–4391.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and Sutskever, I. 2018. Language

Models are Unsupervised Multitask Learners.

Rae, J. W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoffmann, J.; Song, F.; Aslanides, J.;

Henderson, S.; Ring, R.; Young, S.; Rutherford, E.; Hennigan, T.; Menick, J.; Cassirer,

A.; Powell, R.; van den Driessche, G.; Hedricks, L. A.; Rauh, M.; Huang, P.-S.; Glaese,

A.; Welbl, J.; Dathathri, S.; Huang, S.; Uesato, J.; Mellor, J.; Higgins, I.; Creswell, A.;

McAleese, N.; Wu, A.; Elsen, E.; Jayakumar, S.; Buchatskaya, E.; Budden, D.; Sutherland,

E.; Simonyan, K.; Paganini, M.; Sifre, L.; Martens, L.; Li, X. L.; Kuncoro, A.; Nematzadeh,

A.; Gribovskaya, E.; Donato, D.; Lazaridou, A.; Mensch, A.; Lespiau, J.-B.; Tsimpoukelli,

M.; Grigorev, N.; Fritz, D.; Sottiaux, T.; Pajarskas, M.; Pohlen, T.; Gong, Z.; Toyama,

D.; de Masson d’Autume, C.; Yujia, L.; Terzi, T.; Mikulik, V.; Babuschkin, I.; Clark, A.;

251

de Las Casas, D.; Guy, A.; Jones, C.; Bradbury, J.; Johnson, M.; Hechtman, B.; Weidinger,

L.; Gabriel, I.; Issac, W.; Lockhart, S., Ed adn Osindero; Rimell, L.; Dyer, C.; Vinyals, O.;

Ayoub, K.; Stanway, J.; Bennett, L.; Hassabis, D.; Kavukcuoglu, K.; and Irving, G. 2021.

Scaling Language Models: Methods, Analysis & Insights from Training Gopher. arXiv

preprint arXiv:2112.11446.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; and

Liu, P. J. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer. Journal of Machine Learning Research, 21(140): 1–67.

Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016. SQuAD: 100,000+ Questions

for Machine Comprehension of Text. In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, 2383–2392.

Rampášek, L.; Galkin, M.; Dwivedi, V. P.; Luu, A. T.; Wolf, G.; and Beaini, D. 2022. Recipe

for a General, Powerful, Scalable Graph Transformer. Advances in Neural Information

Processing Systems, 35: 14501–14515.

Richardson, K.; Hu, H.; Moss, L.; and Sabharwal, A. 2020. Probing Natural Language

Inference Models through Semantic Fragments. In Proceedings of the AAAI Conference on

Artificial Intelligence, 8713–8721.

Riemann, B. 1854. Über die Hypothesen, Welche der Geometrie zu Grunde Liegen. Königliche

Gesellschaft der Wissenschaften und der Georg-Augustus-Universität Göttingen, 13(133):

1867.

Rimell, L.; Maillard, J.; Polajnar, T.; and Clark, S. 2016. RELPRON: A Relative Clause

Evaluation Data Set for Compositional Distributional Semantics. Computational Linguistics,

42(4): 661–701.

Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C. L.;

Ma, J.; et al. 2021. Biological Structure and Function Emerge from Scaling Unsupervised

252

Learning to 250 Million Protein Sequences. Proceedings of the National Academy of Sciences,

118(15).

Rogers, A.; Kovaleva, O.; and Rumshisky, A. 2020. A Primer in BERTology: What We Know

About How BERT Works. Transactions of the Association for Computational Linguistics,

8: 842–866.

Roller, S.; Erk, K.; and Boleda, G. 2014. Inclusive yet Selective: Supervised Distributional

Hypernymy Detection. In Proceedings of COLING 2014, the 25th International Conference

on Computational Linguistics: Technical Papers, 1025–1036.

Rosenfeld, A.; and Erk, K. 2022. An Analysis of Property Inference Methods. Natural

Language Engineering, 1–27.

Sachan, D.; Zhang, Y.; Qi, P.; and Hamilton, W. L. 2021. Do Syntax Trees Help Pre-trained

Transformers Extract Information? In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume, 2647–2661.

Salman, S.; and Liu, X. 2019. Overfitting Mechanism and Avoidance in Deep Neural Networks.

arXiv preprint arXiv:1901.06566.

Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; van den Berg, R.; Titov, I.; and Welling, M. 2018.

Modeling Relational Data with Graph Convolutional Networks. In The Semantic Web,

593–607.

Shin, S.; Lee, S.-W.; Ahn, H.; Kim, S.; Kim, H.; Kim, B.; Cho, K.; Lee, G.; Park, W.; Ha,

J.-W.; and Sung, N. 2022. On the Effect of Pretraining Corpora on In-context Learning

by a Large-scale Language Model. In Proceedings of the 2022 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 5168–5186.

253

Sparck Jones, K. 1972. A Statistical Interpretation of Term Specificity and Its Application in

Retrieval. Journal of Documentation, 28: 11–21.

Spearman, C. 1904. The Proof and Measurement of Association between Two Things. The

American Journal of Psychology, 15(1).

Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5: An Open Multilingual Graph of

General Knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence.

Steedman, M. 1993. Categorial Grammar. Lingua, 90: 221–258.

Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024. RoFormer: Enhanced

Transformer with Rotary Position Embedding. Neurocomputing, 568.

Sullivan, M. 2023. Formal-Logical Distributional Semantics: Applications to Property

Inference. In Workshop on Knowledge Augmented Methods for Natural Language Processing

at AAAI 2023.

Sullivan, M. 2024. It is not True that Transformers are Inductive Learners: Probing NLI

Models with External Negation. In Proceedings of the 18th Conference of the European

Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), 1924–

1945.

Sun, H.; Liu, X.; Gong, Y.; Zhang, Y.; Jiang, D.; Yang, L.; and Duan, N. 2023. Allies:

Prompting Large Language Model with Beam Search. In Findings of the Association for

Computational Linguistics: EMNLP 2023, 3794–3805.

Sun, Z.; Fan, C.; Han, Q.; Sun, X.; Meng, Y.; Wu, F.; and Li, J. 2020. Self-Explaining

Structures Improve NLP Models. arXiv preprint arXiv:2012.01786.

Swersky, K.; Sutskever, I.; Tarlow, D.; Zemel, R.; Salakhutdinov, R. R.; and Adams, R. P.

2012. Cardinality Restricted Boltzmann Machines. Advances in Neural Information

Processing Systems, 25.

254

Szűcs, P. 2014. On English Topicalization and Left-Dislocation from an Information-Structural

Perspective. Journal of Linguistics, 49: 413–454.

Talukdar, P. P.; and Crammer, K. 2009. New Regularized Algorithms for Transductive

Learning. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, 442–457. Springer.

Tang, C.; Zhang, H.; Loakman, T.; Lin, C.; and Guerin, F. 2023. Enhancing Dialogue

Generation via Dynamic Graph Knowledge Aggregation. In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 4604–

4616.

Tay, Y.; Dehghani, M.; Rao, J.; Fedus, W.; Abnar, S.; Chung, H. W.; Narang, S.; Yogatama,

D.; Vaswani, A.; and Metzler, D. 2022. Scale Efficiently: Insights from Pretraining and

Finetuning Transformers. In International Conference on Learning Representations.

Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; and Mittal, A. 2018. FEVER: a Large-scale

Dataset for Fact Extraction and VERification. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), 809–819.

Tifrea, A.; Becigneul, G.; and Ganea, O.-E. 2018. Poincare Glove: Hyperbolic Word

Embeddings. In International Conference on Learning Representations.

Tong, Z.; Liang, Y.; Sun, C.; Rosenblum, D. S.; and Lim, A. 2020. Directed Graph

Convolutional Network. arXiv preprint arXiv:2004.13970.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.;

Batra, S.; Bhargava, P.; Bhosale, S.; Bikel, D.; Blecher, L.; Ferrer, C. C.; Chen, M.;

Cucurull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu, W.; Fuller, B.; Gao, C.; Goswami,

V.; Goyal, N.; Hartshorn, A.; Hosseini, S.; Hou, R.; Inan, H.; Kardas, M.; Kerkez, V.;

255

Khabsa, M.; Kloumann, I.; Korenev, A.; Koura, P. S.; Lachaux, M.-A.; Lavril, T.; Lee,

J.; Liskovich, D.; Lu, Y.; Mao, Y.; Martinet, X.; Mihaylov, T.; Mishra, P.; Molybog, I.;

Nie, Y.; Poulton, A.; Reizenstein, J.; Rungta, R.; Saladi, K.; Schelten, A.; Silva, R.; Smith,

E. M.; Subramanian, R.; Tan, X. E.; Tang, B.; Taylor, R.; Williams, A.; Kuan, J. X.;

Xu, P.; Yan, Z.; Zarov, I.; Zhang, Y.; Fan, A.; Kambadur, M.; Narang, S.; Rodriguez, A.;

Stojnic, R.; Edunov, S.; and Scialom, T. 2023. Llama 2: Open Foundation and Fine-Tuned

Chat Models. arXiv preprint arXiv:2307.09288.

Van Valin, R. D. 1999. Generalized Semantic Roles and the Syntax-Semantics Interface.

Empirical Issues in Formal Syntax and Semantics, 2: 373–389.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; and

Polosukhin, I. 2017. Attention is all You Need. Advances in Neural Information Processing

Systems, 30.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; and Bengio, Y. 2018. Graph

Attention Networks. In International Conference on Learning Representations.

Venhuizen, N. J.; Hendriks, P.; Crocker, M. W.; and Brouwer, H. 2022. Distributional Formal

Semantics. Information and Computation, 287.

Villalobos, P.; Ho, A.; Sevilla, J.; Besiroglu, T.; Heim, L.; and Hobbhahn, M. 2024. Position:

Will We Run out of Data? Limits of LLM Scaling Based on Human-Generated Data. In

Forty-first International Conference on Machine Learning.

Vinson, D. P.; and Vigliocco, G. 2002. A Semantic Analysis of Grammatical Class Impairments:

Semantic Representations of Object Nouns, Action Nouns and Action Verbs. Journal of

Neurolinguistics, 15: 317–351.

Waldis, A.; Perlitz, Y.; Choshen, L.; Hou, Y.; and Gurevych, I. 2024. Holmes: Benchmark

the Linguistic Competence of Language Models. arXiv preprint arXiv:2404.18923.

256

Wang, B.; Wang, S.; Cheng, Y.; Gan, Z.; Jia, R.; Li, B.; and Liu, J. 2021. InfoBERT:

Improving Robustness of Language Models from An Information Theoretic Perspective. In

International Conference on Learning Representations.

Wang, T.; Wan, X.; and Jin, H. 2020. AMR-To-Text Generation with Graph Transformer.

Transactions of the Association for Computational Linguistics, 8: 19–33.

Wang, T.; Wan, X.; and Yao, S. 2020. Better AMR-To-Text Generation with Graph Structure

Reconstruction. In Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI-20, 3919–3925.

Wang, X.; Yeshwanth, C.; and Nießner, M. 2021. Sceneformer: Indoor Scene Generation with

Transformers. In 2021 International Conference on 3D Vision (3DV), 106–115. IEEE.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E. H.; Le, Q. V.;

and Zhou, D. 2022. Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models. Advances in Neural Information Processing Systems, 35: 24824–24837.

Wettig, A.; Gao, T.; Zhong, Z.; and Chen, D. 2023. Should You Mask 15% in Masked

Language Modeling? In Proceedings of the 17th Conference of the European Chapter of

the Association for Computational Linguistics, 2985–3000.

White, A. S.; Rudinger, R.; Rawlins, K.; and Van Durme, B. 2018. Lexicosyntactic Inference

in Neural Models. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, 4717–4724.

Williams, A.; Nangia, N.; and Bowman, S. R. 2017. A Broad-Coverage Challenge Corpus for

Sentence Understanding through Inference. arXiv preprint arXiv:1704.05426.

Winter, Y. 2016. Elements of Formal Semantics: An Introduction to the Mathematical Theory

of Meaning in Natural Language. Edinburgh University Press.

257

Withagen, R.; De Poel, H. J.; Araújo, D.; and Pepping, G.-J. 2012. Affordances Can Invite

Behavior: Reconsidering the Relationship between Affordances and Agency. New Ideas in

Psychology, 30: 250–258.

Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.;

Gao, Q.; Macherey, K.; Klingner, J.; Shah, A.; Johnson, M.; Liu, X.; Kaiser, Ł.; Gouws, S.;

Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.; Kurian, G.; Patil, N.; Wang, W.; Young,

C.; Smith, J.; Riesa, J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; and Dean, J.

2016. Google’s Neural Machine Translation System: Bridging the Gap between Human

and Machine Translation. arXiv preprint arXiv:1609.08144.

Wu, Z.; Jain, P.; Wright, M.; Mirhoseini, A.; Gonzalez, J. E.; and Stoica, I. 2021. Representing

Long-Range Context for Graph Neural Networks with Global Attention. Advances in

Neural Information Processing Systems, 34: 13266–13279.

Wu, Z.; Liu, Z.; Lin, J.; Lin, Y.; and Han, S. 2020. Lite Transformer with Long-Short Range

Attention. In International Conference on Learning Representations.

Wu, Z.; Peng, H.; and Smith, N. A. 2021. Infusing Finetuning with Semantic Dependencies.

Transactions of the Association for Computational Linguistics, 9: 226–242.

Xia, M.; Artetxe, M.; Zhou, C.; Lin, X. V.; Pasunuru, R.; Chen, D.; Zettlemoyer, L.; and

Stoyanov, V. 2023. Training Trajectories of Language Models Across Scales. In Proceedings

of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 13711–13738.

Xu, K.; Wu, L.; Wang, Z.; Feng, Y.; Witbrock, M.; and Sheinin, V. 2018. Graph2seq:

Graph to Sequence Learning with Attention-Based Neural Networks. arXiv preprint

arXiv:1804.00823.

Xu, Z.; Guo, D.; Tang, D.; Su, Q.; Shou, L.; Gong, M.; Zhong, W.; Quan, X.; Jiang, D.; and

Duan, N. 2021. Syntax-Enhanced Pre-trained Model. In Proceedings of the 59th Annual

258

Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), 5412–5422.

Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revisiting Semi-Supervised Learning with

Graph Embeddings. In International Conference on Machine Learning, 40–48. PMLR.

Yasunaga, M.; Bosselut, A.; Ren, H.; Zhang, X.; Manning, C. D.; Liang, P. S.; and Leskovec,

J. 2022. Deep Bidirectional Language-Knowledge Graph Pretraining. Advances in Neural

Information Processing Systems, 35: 37309–37323.

Yin, Y.; Meng, F.; Su, J.; Zhou, C.; Yang, Z.; Zhou, J.; and Luo, J. 2020. A Novel Graph-

Based Multi-Modal Fusion Encoder for Neural Machine Translation. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 3025–3035.

Young, I. T.; and Van Vliet, L. J. 1995. Recursive Implementation of the Gaussian Filter.

Signal Processing, 44(2): 139–151.

Yuan, Z.; Hu, S.; Vulić, I.; Korhonen, A.; and Meng, Z. 2023. Can Pretrained Language

Models (Yet) Reason Deductively? In Proceedings of the 17th Conference of the European

Chapter of the Association for Computational Linguistics, 1447–1462.

Zadeh, L. A. 1965. Fuzzy Sets. Information and Control, 8: 338–353.

Zamaraeva, O.; Allegue, L. S.; and Gómez-Rodríguez, C. 2024. Spanish Resource Grammar

Version 2023. In Proceedings of the 2024 Joint International Conference on Computational

Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 15093–15104.

Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla, N. V. 2019. Heterogeneous Graph

Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 793–803.

Zhang, J.; Zhang, H.; Xia, C.; and Sun, L. 2020a. Graph-BERT: Only Attention is Needed

for Learning Graph Representations. arXiv preprint arXiv:2001.05140.

259

Zhang, S.; Dinan, E.; Urbanek, J.; Szlam, A.; Kiela, D.; and Weston, J. 2018. Personalizing

Dialogue Agents: I Have a Dog, Do You Have Pets Too? In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

2204–2213.

Zhang, S.; Ning, Q.; and Huang, L. 2022. Extracting Temporal Event Relation with Syntax-

guided Graph Transformer. In Findings of the Association for Computational Linguistics:

NAACL 2022, 379–390.

Zhang, X.; Bosselut, A.; Yasunaga, M.; Ren, H.; Liang, P.; Manning, C. D.; and Leskovec,

J. 2022. GreaseLM: Graph REASoning Enhanced Language Models. In International

Conference on Learning Representations.

Zhang, Y.; Guo, Z.; Teng, Z.; Lu, W.; Cohen, S. B.; Liu, Z.; and Bing, L. 2020b. Lightweight,

Dynamic Graph Convolutional Networks for AMR-to-Text Generation. In Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

2162–2172.

Zhang, Z.; Wu, Y.; Zhao, H.; Li, Z.; Zhang, S.; Zhou, X.; and Zhou, X. 2020c. Semantics-

Aware BERT for Language Understanding. In Proceedings of the AAAI Conference on

Artificial Intelligence, 9628–9635.

Zhou, H.; Young, T.; Huang, M.; Zhao, H.; Xu, J.; and Zhu, X. 2018. Commonsense

Knowledge Aware Conversation Generation with Graph Attention. In IJCAI, 4623–4629.

Zhou, J.; Zhang, Z.; Zhao, H.; and Zhang, S. 2020. LIMIT-BERT: Linguistics Informed

Multi-Task BERT. In Findings of the Association for Computational Linguistics: EMNLP

2020, 4450–4461.

Zhu, M. 2004. Recall, Precision and Average Precision. Department of Statistics and Actuarial

Science, University of Waterloo, Waterloo, 2(30): 6.

260

Zhu, Y.; Du, Y.; Wang, Y.; Xu, Y.; Zhang, J.; Liu, Q.; and Wu, S. 2022. A Survey on

Deep Graph Generation: Methods and Applications. In The First Learning on Graphs

Conference.

Zong, C.; Xia, F.; Li, W.; and Navigli, R. 2021. Dependency-driven Relation Extraction with

Attentive Graph Convolutional Networks. In Proceedings of the 59th Annual Meeting of

the Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), 4458–4471.

261

	Abstract
	Introduction
	Defining Language Models over Logical Forms
	Logical Forms
	Language Models

	Objectives
	Contributions
	Outline

	It is not True that (Superficial) Transformers are Inductive Learners
	Background: NLI
	Related Work
	Inoculation by Fine-Tuning
	Probing LMs with Negation

	Can Transformers Model LEM?
	Experiment 1
	Experimental Setup
	Challenge Data Generation
	Inoculation and Evaluation

	Results

	Experiment 2
	Experimental Setup
	Results

	Experiment 3
	Experimental Setup
	Results

	Discussion
	Conclusion
	Proof of Theorem 1
	FOC[+;MOD]
	Notation
	Proof

	Formal-Logical Distributional Semantics (FoLDS)
	Background and Related Work
	Formal Semantics
	Distributional Semantics
	Formal-Distributional Semantics

	The FoLDS Model
	Distributional Semantics over Logical Forms
	From Textual to MRS Representations
	Minimal Recursion Semantics (MRS)
	Parsing and Coreference Alignment

	From MRS to Pseudo-MRS
	MRS Preprocessing
	Pseudo-MRS (PMRS)

	From Pseudo-MRS to a Fuzzy-Logical Model World
	Similarity Metric

	Experiment: Property Inference
	Task Description
	Previous Work
	Experiment
	Evaluation and Results

	Discussion

	Graph-based FoLDS (GFoLDS)
	Background and Related Work
	Dependency MRS (DMRS)
	Graph Neural Networks (GNNs)
	Graph Convolutional Networks
	GCNs Aggregate Local Neighborhoods
	Graph Transformers

	GNNs for NLP
	Task-Specific Models
	Knowledge Graph Incorporation
	Linguistic Structure Infusion
	Graph-to-Text Models
	Functional Distributional Semantics at Scale

	GFoLDS Architecture
	Embedding Layer
	Positional Encoding Network
	Encoder Stack

	Data Preprocessing
	CARGs and OOV Items
	Additional Preprocessing Steps

	Pretraining GFoLDS
	Corpus
	Masked Node Modeling
	Hyperparameters

	Discussion

	GFoLDS: Experiments
	BERT Comparison Models
	Pretraining Data
	Hyperparameter Selection

	RELPRON
	Task Description
	Results

	Natural Language Inference (SNLI)
	Task Description
	Constructing Graph Representations
	CARGs and OOV Items

	Results

	Factuality
	Task Description
	Results

	Property Inference
	Task Description
	Results

	Discussion

	GFoLDS: Model Analysis
	Scalability
	Background
	Experimental Setup
	Results

	The Accelerated Learning Hypothesis
	Experimental Setup
	Elementary Probes

	Results

	Limitations and Weaknesses
	Double-Negation Cancellation
	Task Description
	Results

	Mod-2 Counting
	Theoretical Results
	Experimental Results
	Discussion

	Sentence Membership Classification
	Experiment
	Results

	Discussion
	Proof of Theorem 2
	Proof Sketch
	Formal Proof

	Future Directions
	Applications to Lower-Resource Languages
	Improvements to GFoLDS
	Positional Encoding Module
	Background
	Proposed Approach
	Applications

	Incorporating OOV Terms and CARGS
	Multiple-Sentence Model
	Proposed Approach
	Entailment Prediction Objective

	Hyperbolic Embeddings

	The Next Step: Graph-Generative Models
	Background
	Proposed Architecture
	Training

	Discussion

	Conclusion
	Findings and Contributions
	Limitations

	Bibliography

